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OFDM in the Prescence of Dispersive Channels 

Welcome to this lecture on Digital Communication using GNU Radio. I am Kumar Appiah 

from the Department of Electrical Engineering at IIT Bombay. In this session, we will 

continue our exploration of Orthogonal Frequency Division Multiplexing (OFDM) and 

delve into how equalization can be significantly simplified with OFDM. 
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To recap our previous discussion on OFDM, we established that viewing OFDM as a 

combination of symbol repetition and frequency shifting provides valuable insights. 

Specifically, if we repeat the symbol b0 multiple times, and similarly for b1, and apply 



appropriate frequency shifts, the resulting waveform in the frequency domain displays a 

distinct pattern. In this pattern, b0 occupies a spectrum close to 0 Hz, b1 is near 𝑊𝑊
4

 Hz, b2 is 

around 𝑊𝑊
2

 or −𝑊𝑊
2

 Hz, and b3 is close to −𝑊𝑊
4

 Hz. These are known as sub-carriers, and they 

follow a sinc-like pattern in the frequency domain while carrying data. 

One important point to remember is the need for precise sampling in the frequency domain. 

Accurate frequency domain sampling translates to precise time-domain frequency 

adjustments. Therefore, for OFDM to perform optimally, it is crucial to have accurate 

receiver carrier calibration and phase estimation. Failing to sample at the correct frequency 

points can lead to inter-symbol interference due to contributions from adjacent symbols. 

Let's proceed with the next topic. 
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We were discussing how the Discrete Fourier Transform (DFT), or more precisely, the 

inverse DFT matrix, can be used to map your symbols b0, b1, b2, and so on, into a format 

where they are distributed across narrow-band sub-carriers in the frequency domain. As 



you increase the number of sub-carriers, you'll notice that the spectral footprint of these 

sinc-like pulses becomes narrower, allowing each to occupy a more confined bandwidth. 

Despite this narrowing, you still achieve parallel transmission. 

In the current scenario, we have divided the bandwidth from -W/2 to W/2 into 8 parallel 

OFDM streams. These 8 parallel streams enable you to transmit data at the same rate, but 

now in separate frequency bands. To illustrate, b0 occupies frequencies close to 0 Hz, b1 is 

near W/8, b2 at W/4, b3 at 3W/8, and b4 approaches W/2. This distribution continues 

accordingly, with 8 sub-carriers effectively representing narrow-band transmissions in the 

frequency domain. 
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If you further increase the number of sub-carriers to 16, they become even narrower and 

more closely spaced in the frequency domain. It’s worth noting, though not covered in this 

course, that improper frequency sampling, such as failing to correctly calibrate the receiver 

frequency, can lead to significant inter-symbol interference. This interference, appearing 



in the frequency domain, can severely impact performance. Keep this in mind as we move 

forward with our DFT-based discussion. 
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Technically speaking, what we discussed was that you can use the inverse DFT matrix, 

which, for example, is represented by the matrix 

 

to facilitate this type of modulation where your symbols are distributed across parallel 

frequency bins. How exactly does this work? Let's reframe our understanding using slightly 

different notation, though the underlying concept remains the same. 

Consider collating your data into 𝑏𝑏0, 𝑏𝑏1, 𝑏𝑏2, … , 𝑏𝑏𝑛𝑛−1. For a single block of data, the idea is 

to repeat each bi multiple times. For instance, b0 is repeated n times and multiplied by a 

column of all ones. Similarly, b1 is repeated n times but multiplied by 𝑒𝑒𝑗𝑗ω0𝑛𝑛, where ω0 



represents different frequency components like 𝑒𝑒𝑗𝑗2π/𝑛𝑛  and 𝑒𝑒𝑗𝑗4𝜋𝜋/𝑛𝑛 . This approach is 

applied to each bi, so b2 is multiplied by 𝑒𝑒𝑗𝑗4𝜋𝜋/𝑛𝑛, 𝑒𝑒𝑗𝑗8𝜋𝜋/𝑛𝑛, and so on, up to 𝑏𝑏𝑛𝑛−1. 
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The matrix is scaled by 1
√𝑛𝑛

 to ensure it is unitary. From our previous discussion, we defined 

W, the inverse DFT matrix, in a 4-point example as follows: 

 

We also considered 𝑊𝑊H, the Hermitian (conjugate transpose) of W: 

 



When you compute 𝑊𝑊H𝑊𝑊, you get a matrix that is 4 × identity. To normalize this, you 

divide by 1
√4

, resulting in the 4x4 identity matrix. 
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This scaling by 1
√4

 is crucial because it ensures that 𝑊𝑊H𝑊𝑊  equals the identity matrix, 

meaning the energy of the vectors is preserved. In other words, multiplying by W does not 

alter the energy of the vector b. This normalization is fundamental for maintaining the 

integrity of the signal's energy in the transformed domain. 

Let’s examine the relationship between our signal vector 𝑥𝑥 and 𝑏𝑏, where 𝑥𝑥 = 𝑊𝑊𝑊𝑊 and 𝒃𝒃 is 

our vector of symbols 𝑏𝑏0, 𝑏𝑏1, … , 𝑏𝑏𝑛𝑛−1. We want to evaluate the expectation of the squared 

norm of 𝒃𝒃, which is given by: 

𝐸𝐸[|𝑏𝑏|2] = 𝐸𝐸[𝑏𝑏𝐻𝐻𝑏𝑏]. 

This simplifies to: 



𝐸𝐸[𝑏𝑏𝐻𝐻𝑏𝑏] = �𝐸𝐸[|𝑏𝑏𝑙𝑙|2]
𝑛𝑛−1

𝑙𝑙=0

. 

Here, 𝒃𝒃H 𝒃𝒃 represents the sum of the magnitudes squared of the elements of 𝒃𝒃. Assuming 

that our symbols are generated as independent and identically distributed (i.i.d.) with the 

same average energy, this sum becomes: 

N ⋅ 𝐸𝐸𝑠𝑠, 

where Es is the average signal energy per symbol. Therefore, 𝑛𝑛 ⋅ 𝐸𝐸𝑠𝑠 represents the total 

signal energy in the vector 𝒃𝒃. 
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Next, consider the vector 𝑥𝑥 = 𝑊𝑊𝑊𝑊. To determine whether we use more or less power after 

applying the inverse DFT matrix W, we evaluate the expectation of 𝑥𝑥𝐻𝐻𝑥𝑥: 

𝐸𝐸[𝑥𝑥𝐻𝐻𝑥𝑥] = 𝐸𝐸[(𝑊𝑊𝑊𝑊)𝐻𝐻(𝑊𝑊𝑊𝑊)]. 

By substituting 𝑥𝑥 = 𝑊𝑊𝑊𝑊, this becomes: 



𝐸𝐸[(𝑊𝑊𝑊𝑊)𝐻𝐻(𝑊𝑊𝑊𝑊)] = 𝐸𝐸[𝑏𝑏𝐻𝐻𝑊𝑊𝐻𝐻𝑊𝑊𝑊𝑊]. 
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Since W is a fixed, non-random matrix, the expectation operator can be factored out: 

𝐸𝐸[𝑏𝑏𝐻𝐻𝑊𝑊𝐻𝐻𝑊𝑊𝑊𝑊]. 

We previously established that WH W is the identity matrix In, so: 

𝐸𝐸[𝑏𝑏𝐻𝐻𝑊𝑊𝐻𝐻𝑊𝑊𝑊𝑊] = 𝐸𝐸[𝑏𝑏𝐻𝐻𝐼𝐼𝑛𝑛𝑏𝑏] = 𝐸𝐸[𝑏𝑏𝐻𝐻𝑏𝑏]. 

Therefore: 

𝐸𝐸[𝑥𝑥𝐻𝐻𝑥𝑥] = 𝐸𝐸[𝑏𝑏𝐻𝐻𝑏𝑏] = 𝑛𝑛 ⋅ 𝐸𝐸𝑠𝑠. 

This result is significant because it shows that using this scaled version of W (with the 1
√𝑛𝑛

 

scaling) ensures that the energy consumption remains unchanged. In other words, the 

energy usage is preserved when transforming 𝒃𝒃 into 𝒙𝒙 using the IDFT matrix.  



However, a word of caution: in practical implementations, such as those in GNU Radio, 

the DFT matrix may have scaling factors associated with it. This scaling needs to be taken 

into account to correctly assess the signal's energy. It’s a straightforward adjustment, but 

an important one to remember. 

What you need to do here is simply multiply by a factor, but just keep in mind that we will 

rely on this particular DFT matrix framework because it has very useful properties. For 

instance, you can verify that 𝑊𝑊𝐻𝐻𝑊𝑊 = 𝑊𝑊𝑊𝑊𝐻𝐻 = 𝐼𝐼𝑛𝑛, where In is the identity matrix. This 

makes our analysis much more convenient.  

In other words, if the energy budget for your signal at the transmitter is Es per symbol, then 

after multiplying 𝒃𝒃 by W to get 𝒙𝒙, the energy per symbol remains the same. Since W is a 

unitary matrix, we demonstrated that 𝑥𝑥𝐻𝐻𝑥𝑥 = 𝑏𝑏𝐻𝐻𝑏𝑏, or more precisely, the expected value of 

𝑥𝑥𝐻𝐻𝑥𝑥  equals the expected value of 𝑏𝑏𝐻𝐻𝑏𝑏 , which is 𝑛𝑛 ⋅ 𝐸𝐸𝑠𝑠 . For modulation schemes like 

QPSK, this holds true without any adjustments. However, for other modulations like 16-

QAM, you might need to consider the expectation when calculating power. 
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Now, 𝒙𝒙 is essentially the inverse DFT of 𝒃𝒃. The important question here is: how do we 

retrieve 𝒃𝒃 from 𝒙𝒙 at the receiver? Let’s assume, for simplicity, that there is no noise and no 

channel interference. In this ideal scenario, since 𝒙𝒙 is the inverse DFT of 𝒃𝒃, you can simply 

apply the DFT to 𝒙𝒙 to recover 𝒃𝒃.  

The reason this works is because the DFT and IDFT are perfectly lossless and reversible 

operations. So, at the receiver, you can group the n symbols of 𝒙𝒙, perform the DFT, and 

retrieve your original symbol vector 𝒃𝒃. 

However, the real challenge arises when there is noise or when the signal passes through a 

channel. This is where things become more complicated, and we need to account for issues 

like noise interference and channel effects. In the next part of the discussion, we will take 

a closer look at how the presence of a channel introduces convolution and noise addition, 

and we will explore strategies to handle these complications effectively. 
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For now, just remember that, under ideal conditions, the DFT and IDFT framework allows 

you to perfectly recover your data with the same bandwidth usage, as the channel is divided 

into k or n narrowband subchannels or subcarriers. 

If you recall from your Digital Signal Processing (DSP) studies, consider two sequences 

x[n] and h[n]. Let their N-point DFTs be denoted by X[k] and H[k], respectively. When 

we say "N-point DFT," it refers to the summation 𝑋𝑋[𝑘𝑘] = ∑𝑥𝑥[𝑛𝑛]𝑒𝑒𝑗𝑗2𝜋𝜋𝜋𝜋𝜋𝜋/𝑁𝑁. These DFTs, 

X[k] and H[k], are defined for values of k ranging from 0 to N-1. 
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Now, if we denote Y[k] as the product of H[k] and X[k], i.e., 𝑌𝑌[𝑘𝑘] = 𝐻𝐻[𝑘𝑘] × 𝑋𝑋[𝑘𝑘], the 

sequence that corresponds to this multiplication is not the regular linear convolution but 

rather a circular convolution. That’s why I’ve placed a "C" to indicate circular convolution. 

What this means is that, unlike the traditional convolution in the time domain, when you 

multiply the DFTs of two sequences, the inverse of that multiplication will result in a 

sequence that is circularly convolved in the time domain. 



In the case of the Discrete-Time Fourier Transform (DTFT), when you multiply the DTFTs 

of two sequences, the inverse of this operation results in a linear convolution of the two 

sequences in the time domain. However, with the DFT, the multiplication of the DFTs 

results in circular convolution, not linear convolution. In terms of notation, your resulting 

sequence Y[n] would be represented as: 

𝑌𝑌[𝑛𝑛] = �𝑥𝑥[𝑙𝑙]ℎ[𝑛𝑛 − 𝑙𝑙 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚]
𝑁𝑁−1

𝑙𝑙=0

. 

Alternatively, you could swap h[n] and x[n], and the outcome remains the same due to the 

properties of convolution. 

This is an important distinction because circular convolution is not equivalent to linear 

convolution. Now, let’s consider this within the context of OFDM. In OFDM, after 

applying the IDFT to your signal, the result then undergoes convolution with the channel. 
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Here's where the issue arises: in order to leverage single-tap equalization methods, such as 

zero-forcing or MMSE equalizers, you want the relationship in the frequency domain to be 

straightforward. Specifically, if your channel response h is known and your received signal 

y is known, then you can compute the transmitted signal x by performing 𝑦𝑦
ℎ
. In the case of 

a zero-forcing equalizer, you would just divide y by h. Similarly, for MMSE equalization, 

you would divide by some function of h. This approach works perfectly when you have 

circular convolution. 

However, the complication is that practical channels perform linear convolution, not 

circular convolution. This is the key challenge. To exploit the DFT and IDFT properties, 

where you want 𝑌𝑌[𝑘𝑘] = 𝑋𝑋[𝑘𝑘] × 𝐻𝐻[𝑘𝑘] to hold true. You need to address this discrepancy. 

The natural behavior of channels doesn’t provide us with circular convolution, it performs 

linear convolution instead. So, how can we address this mismatch? One clever solution is 

to artificially induce circular convolution by incorporating what’s known as a cyclic prefix. 

Here's the idea: imagine we take a block of symbols, say 𝑏𝑏0, 𝑏𝑏1, 𝑏𝑏2, … , 𝑏𝑏𝑛𝑛−1, and after 

applying the inverse DFT (IDFT), we obtain the corresponding time-domain sequence 

𝑥𝑥0, 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛−1. This sequence is often referred to as your "x-vector." To this x-vector, we 

then prepend a cyclic prefix, consisting of the last few samples of the sequence, say 

𝑥𝑥𝑛𝑛−3, 𝑥𝑥𝑛𝑛−2, 𝑥𝑥𝑛𝑛−1. 

What does this cyclic prefix achieve? Let’s analyze it in detail. Suppose we have a sequence 

𝑥𝑥0, 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, and we wish to convolve this with a channel represented by coefficients 

ℎ0, ℎ1, ℎ2. If we want to mimic circular convolution, the cyclic prefix enables us to trick 

the system into doing just that.  

Here’s how: when you perform the circular convolution, instead of the regular linear 

convolution where h0 multiplies x0, circular convolution adds terms like ℎ2 × 𝑥𝑥3  and 

ℎ1 × 𝑥𝑥2  from earlier samples due to the wrap-around effect. Normally, this wouldn't 

happen naturally with linear convolution, but by adding the cyclic prefix, we essentially 

extend the sequence and shift this wrap-around behavior into the cyclic prefix portion, so 



that the actual convolution within the desired segment of the signal behaves like circular 

convolution. 
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For example, suppose you have x0, x1, x2, x3 and you perform a convolution with h0, h1, h2. 

In linear convolution, h0 would only interact with x0, but circular convolution incorporates 

terms like ℎ2 × 𝑥𝑥3 from the tail end of the sequence. By appending 𝑥𝑥𝑛𝑛−3, 𝑥𝑥𝑛𝑛−2, 𝑥𝑥𝑛𝑛−1 in 

front of the sequence as a cyclic prefix, we ensure that this wrap-around behavior occurs 

in a controlled manner, allowing the convolution within the sequence's main body to 

behave as if it were circular. 

To see this in action, imagine we align h0, h1, h2 against x0, x1, x2, x3, perform the 

convolution, and examine the outputs in the region of interest. Due to the cyclic prefix, we 

get the desired circular convolution results in the center of the sequence. For instance, 

instead of just ℎ0 × 𝑥𝑥0 , we now get contributions like ℎ1 × 𝑥𝑥3  and ℎ2 × 𝑥𝑥2 , exactly as 

circular convolution would require. Similarly, as you shift, the convolution behaves as 



needed, and you can ignore the unwanted terms introduced by the linear convolution at the 

prefix and suffix. 

Thus, by adding this cyclic prefix to the OFDM symbols, we effectively mimic circular 

convolution within the main part of the sequence, even though the underlying channel 

naturally performs linear convolution. For example, suppose we have two groups of 

symbols, x0, x1, x2, x3 followed by another block of symbols x'0, x'1, x'2, x'3. To induce 

circular convolution, we prepend a portion of each sequence to itself, so x2 and x3 are 

prepended before x0, x1, x2, x3, and similarly, x'2 and x'3 are prepended before the next 

sequence.  

As the convolution occurs with the channel, h0, h1, h2 moves across the sequence, and by 

carefully discarding the results at the cyclic prefix region, we retain the desired behavior 

of circular convolution in the main sequence, ensuring the OFDM signal can be effectively 

processed. 
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The key here is that by using a cyclic prefix, we are able to achieve circular convolution, 

even though the natural tendency of the channel is to perform linear convolution. This trick 

allows us to preserve the desirable properties of circular convolution, but it comes with a 

cost. Specifically, to implement this, we need to prepend a portion of data to the beginning 

of each block, which creates overhead. Essentially, you are repeating some of the symbols. 

It’s not a free benefit, but a trade-off.  

For instance, in OFDM, if you utilize a cyclic prefix, let’s say with three symbols, then 

instead of sending n symbols in n time instances, you are now sending n symbols in n+3 

time instances. So, this overhead reduces the system's efficiency slightly. The efficiency of 

the system, therefore, can be thought of as 𝑛𝑛
𝑛𝑛+3

, which reflects the fact that the data rate has 

decreased.  

Now, because of this trade-off, when designing an OFDM system, the size of the FFT 

block, n, is typically chosen to be as large as possible while still meeting the desired data 

rate. At the same time, the length of the cyclic prefix is selected based on the expected 

channel length in terms of taps. For example, if you have a channel with three taps H0, H1, 

and H2, the cyclic prefix needs to be at least two samples long. However, designers will 

often choose a slightly longer cyclic prefix to accommodate for unforeseen conditions, 

such as environments where the channel has more taps than anticipated. You wouldn’t want 

the system to fail simply because it encounters a channel with more taps than expected. 

This overhead due to the cyclic prefix can be quantified as well. We can define an "OFDM 

efficiency," which is not a standard term, but it is useful for understanding the trade-off. 

The efficiency is given by 𝑛𝑛
𝑛𝑛+cp length

, where "cp length" represents the length of the cyclic 

prefix. Alternatively, we can think of the overhead as a percentage, and naturally, the goal 

is to have n much larger than the cyclic prefix length.  

Of course, the cp length should be chosen to match the length of the channel, typically, it 

should be the length of the channel minus one tap. So, the principle is that by using the 

cyclic prefix, even after you convolve with the channel, you can safely discard the portion 

of the signal that results from the cyclic prefix.  



For example, let’s denote the output of the channel convolution as y'. After convolution, 

you would get 𝑦𝑦𝑛𝑛−2′ , 𝑦𝑦𝑛𝑛−3′ , etc., and you simply ignore those initial samples. The rest of 

the signal will be circularly convolved as intended. Therefore, the cyclic prefix effectively 

enables you to preserve the properties of circular convolution while avoiding the distortions 

that linear convolution would otherwise introduce. 
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After the cyclic prefix has been accounted for at the receiver, what you essentially achieve 

is circular convolution. Now, what does that do for us? If you take the DFT of the segment 

after the cyclic prefix, let’s call this the "clean" portion, you will obtain Yk = Hk Xk. This 

results in a "flat" channel, meaning the output Yk is simply the input Xk multiplied by Hk, 

the channel frequency response. This is incredibly beneficial because now, equalization 

becomes much simpler. Whether you’re using an MMSE equalizer or a zero-forcing 

approach, you only need to multiply or divide by a single number Hk for each subcarrier. 

This simplification is the core advantage of the cyclic prefix technique. 



But there’s another aspect we haven’t discussed yet: the impact of noise. Let’s tackle that 

now. 

The overall model for the received signal includes both convolution with the channel 

impulse response and the addition of noise. Mathematically, it can be expressed as: 

𝑌𝑌𝑛𝑛 = ℎ𝑛𝑛 ∗ 𝑋𝑋𝑛𝑛 + 𝑊𝑊𝑛𝑛, 

where Wn represents the noise. If we express the received vector 𝑦𝑦 as [𝑦𝑦0,𝑦𝑦1, … ,𝑦𝑦𝑁𝑁−1]𝑇𝑇, 

and similarly for 𝒙𝒙, we then include the cyclic prefix in a way that ensures the impact of 

the channel convolution appears as circular convolution within the region of interest. The 

cyclic prefix length is chosen to be long enough to encompass the channel length, 

effectively transforming the linear convolution into a circular one. 

Now, if we use the DFT matrix W that we previously introduced, where 𝑊𝑊†𝑊𝑊 = 𝐼𝐼 (i.e., 

W is unitary), and apply it to the signal after the cyclic prefix, we get: 

𝑊𝑊†𝑦𝑦 = 𝑊𝑊†(ℎ ⊛ 𝑥𝑥) + 𝑊𝑊†𝑤𝑤. 

Taking the DFT of h ⊛ x gives us Hk Xk, as expected. The question then arises: what 

happens to the noise? 

Here’s the clever part: the noise 𝒘𝒘, which we assume to be complex normal with zero mean 

and an identity covariance matrix, maintains its distribution even after the DFT. This is due 

to the fact that the DFT matrix, when scaled appropriately, behaves like a rotation matrix. 

As a result, the noise variance remains unchanged. In other words, applying the DFT to the 

noise doesn't affect its statistical properties. 

So, if you take the DFT of the noise, you get a noise sequence with the same distribution 

as before. The covariance of the transformed noise remains identical. Specifically, if we 

call the transformed noise 𝒘𝒘', the expectation of 𝑤𝑤′𝑤𝑤′† is: 

𝐸𝐸[𝑤𝑤′𝑤𝑤′†] = 𝑊𝑊†𝐸𝐸[𝑤𝑤𝑤𝑤†]𝑊𝑊. 



Since 𝑤𝑤 has identity covariance, this reduces to 𝑊𝑊†𝑊𝑊 = 𝐼𝐼, confirming that the covariance 

of the transformed noise is still the identity matrix. Thus, even though we’ve applied this 

DFT-based processing, the noise variance does not change, making the system easier to 

manage. 
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Therefore, the wk's are actually independent and identically distributed (IID) because I 

chose my w to be IID. They also have the same variance as w. This is the key point here. 

This result holds only when your noise w has a covariance structure that is a scaled version 

of the identity matrix, which is exactly the scenario we are considering. Hence, w'k has the 

same variance as wn and maintains the IID property just like wn.  

In effect, what we’ve achieved is a very straightforward single-tap scaling in the presence 

of additive white Gaussian noise (AWGN). This simplification makes the channel 

extremely easy to manage. Essentially, your OFDM system has transformed what was 

originally a complex convolutional filtering problem into something that resembles a very 



clean AWGN channel with single-tap scaling. This dramatically simplifies receiver design 

and makes the whole process much more tractable. 

Of course, there are trade-offs involved. For instance, you had to incorporate a cyclic 

prefix, and as a result, there’s a somewhat unusual frequency footprint. However, the ease 

of implementation and the simplicity of the receiver design often outweigh these costs 

when considering the bigger picture. 

To summarize what we’ve covered: Broadband channels can be broken down into parallel 

channels for simpler equalization. The idea is to divide your data into parallel frequency 

bands, and by using the DFT and IDFT, you can effectively achieve this parallelization. 

One of the key requirements to make this work is circular convolution, which is facilitated 

by the cyclic prefix, an overhead, but a necessary one. Due to its simplicity and 

effectiveness, OFDM has become the dominant modulation technique in many modern 

wireless communication standards. For example, Wi-Fi and LTE both rely on OFDM or 

its variants. Even in wired communications, such as ADSL, a variation of OFDM known 

as discrete multi-tone (DMT) is widely used. 

In the next lecture, we will dive into a couple of practical examples of implementing OFDM 

using GNU Radio, which will help clarify these concepts further. Thank you.  


