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Hello, and welcome to this lecture on Digital Communication Using GNU Radio. I’m 

Kumar Appiah from the Department of Electrical Engineering at IIT Bombay. Today, we 

will be continuing our discussion on Orthogonal Frequency Division Multiplexing 

(OFDM), picking up where we left off in the previous lecture. 

(Refer Slide Time: 01:08) 

 

As you may recall, in our previous discussion, we explored the concept of converting a 

wideband channel into several parallel narrowband channels. This transformation allows 



these smaller narrowband channels, referred to as subcarriers, to behave as flat channels, 

simplifying the equalization process significantly. We will expand on this idea today. 

If you remember from our previous lectures, the transmit signal model we're considering 

is: 

𝑥𝑥(𝑡𝑡) = �𝑏𝑏𝑘𝑘 ⋅ 𝑝𝑝(𝑡𝑡 − 𝑘𝑘𝑘𝑘) 

where bk represents the symbols being transmitted, and p(t - kT) denotes the effective pulse 

as seen by the receiver. This effective pulse is essentially the convolution of the transmit 

pulse with the channel's impulse response, if present.  

The pulse shape p(t) plays a crucial role in determining the bandwidth usage. Since p(t) 

results from the convolution of 𝑔𝑔tx(𝑡𝑡) (the transmit pulse shape) and the channel, the 

bandwidth usage is naturally limited by the narrower of the two bandwidths. Typically, the 

transmit pulse 𝑔𝑔tx(𝑡𝑡) is shaped in such a way that it has a constrained bandwidth footprint. 
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To reduce the channel's frequency domain spread, one approach is to widen the pulse p(t) 

and subsequently reduce the data rate. This is one way of addressing the problem. Another 

alternative, as we discussed in the previous lecture, is to repeat symbols like b0 and b1 

multiple times. If you recall, we explored the scenario where p(t) has a Fourier transform 

denoted as p(f). Suppose we transmit the symbol b0 four times. This results in the effective 

pulse being expressed as: 

𝑝𝑝(𝑡𝑡) + 𝑝𝑝(𝑡𝑡 − 𝑇𝑇) + 𝑝𝑝(𝑡𝑡 − 2𝑇𝑇) + 𝑝𝑝(𝑡𝑡 − 3𝑇𝑇) 

We derived this expression during the last class, and today we will build on that foundation 

to deepen our understanding of OFDM. 

Let’s continue our exploration of how these ideas fit together and lead to the powerful 

technique of OFDM. 
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If you combine these terms carefully, you will get the expression 𝑝𝑝(𝑓𝑓) × 2 × 𝑐𝑐𝑐𝑐𝑐𝑐(3π𝑓𝑓𝑓𝑓), 

where I have taken 𝑒𝑒−𝑗𝑗3π𝑓𝑓𝑓𝑓  out as a common factor. This results in 2 × 𝑐𝑐𝑐𝑐𝑐𝑐(3π𝑓𝑓𝑓𝑓) +



𝑐𝑐𝑐𝑐𝑐𝑐(π𝑓𝑓𝑓𝑓). To verify this, if you take 𝑒𝑒−𝑗𝑗3π𝑓𝑓𝑓𝑓 as a common factor, you'll get terms like 

𝑒𝑒𝑗𝑗3π𝑓𝑓𝑓𝑓 and 𝑒𝑒−𝑗𝑗3π𝑓𝑓𝑓𝑓, and when you add them, you'll end up with 2𝑐𝑐𝑐𝑐𝑐𝑐(3π𝑓𝑓𝑓𝑓). Similarly, for 

the other term, you'll have 𝑒𝑒𝑗𝑗π𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒−𝑗𝑗π𝑓𝑓𝑓𝑓, which will combine to give 𝑐𝑐𝑐𝑐𝑐𝑐(π𝑓𝑓𝑓𝑓). 
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Now, when you add these cosine terms, applying the trigonometric identity for the sum of 

cosines, you'll have 2𝑐𝑐𝑐𝑐𝑐𝑐 �4π𝑓𝑓𝑓𝑓
2
� 𝑐𝑐𝑐𝑐𝑐𝑐 �2π𝑓𝑓𝑓𝑓

2
�, which simplifies to 2𝑐𝑐𝑐𝑐𝑐𝑐(2π𝑓𝑓𝑓𝑓)𝑐𝑐𝑐𝑐𝑐𝑐(π𝑓𝑓𝑓𝑓). 

Now, if you examine the first cosine term 𝑐𝑐𝑐𝑐𝑐𝑐(2π𝑓𝑓𝑓𝑓), it becomes zero at values of f such 

that 2π𝑓𝑓𝑓𝑓 = ± π
2
. This leads to the condition 𝑓𝑓 = 1

4T
. 

To better visualize this, imagine plotting the spectrum. Let’s assume that the range is from 

− 1
2𝑡𝑡

 to 1
2𝑡𝑡

, which can also be expressed as −𝑤𝑤
2

 to 𝑤𝑤
2

, since 𝑡𝑡 = 1
𝑤𝑤

. With this setup, the 

spectrum will drop to zero at specific points, effectively reducing the bandwidth usage to 

this smaller region. What this means is that you are now using approximately one-fourth 

of the original bandwidth. This reduction in bandwidth aligns with our intuitive 

understanding from digital signal processing (DSP): slowing down the pulse in the time 



domain, whether by repeating symbols or other methods, naturally compresses the 

bandwidth in the frequency domain. 
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The key idea here is that we are repeating symbols like b0 multiple times, as well as b1, 

perhaps repeating them k times each. While this repetition helps to flatten the channel, 

narrowing the frequency spectrum usage, it comes at the cost of a reduced data rate. 

Initially, we were transmitting one symbol every t seconds, but now, after repeating the 

symbols, we are transmitting one symbol every kt seconds. For example, if k = 4, we would 

be sending one symbol every 4t seconds. This approach severely impacts the data rate, 

which is clearly not ideal. 

So, what’s a better approach? Let’s suppose that the pulse p(t) occupies the bandwidth 

between −𝑤𝑤
2
 and 𝑤𝑤

2
. This is what we have been discussing so far. However, if you now 

repeat the symbol bk multiple times, let’s say K times, then the new spectrum will be 

reduced to a range of approximately − 𝑤𝑤
2𝐾𝐾

 to 𝑤𝑤
2𝐾𝐾

. This is justified because if you repeat 

𝑝𝑝(𝑡𝑡) + 𝑝𝑝(𝑡𝑡 − 𝑡𝑡) + ⋯+ 𝑝𝑝(𝑡𝑡 − (𝑘𝑘 − 1)𝑡𝑡) , the resulting effective spectrum will be 



narrower, as each delay introduces a phase shift of 𝑒𝑒−𝑗𝑗2π𝑓𝑓𝑓𝑓. The accumulation of these 

phase shifts compresses the spectrum. 
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If you account for all the terms and perform a geometric series summation, you'll arrive at 

something that resembles a sinc function, which makes intuitive sense. As k becomes larger 

and larger, the spectrum becomes progressively narrower. The downside, however, is that 

the data rate also reduces to 1
𝑘𝑘
. This is what we've observed. 

We tried this with k = 4. When k = 2, the spectral footprint changes, and you get a spectrum 

corresponding to repeating b0 and b1 two times each, and so forth. For k = 4, you see a 

different spectral footprint. Recall that when the bandwidth was originally between −𝑤𝑤
2
 

and 𝑤𝑤
2

, after repeating the symbols four times, the spectrum was reduced to 𝑤𝑤
4

, which 

corresponds to 1
4𝑡𝑡

. As k increases, the pulses become narrower and start resembling sinc 

functions more closely. This behavior aligns well with expectations, given the Fourier 

transform properties.  



Now, the issue we face is that while the spectral footprint becomes narrower, the data rate 

is reduced. How do we resolve this problem? The key idea here is that repeating the 

symbols k times reduces the spectral footprint by a factor of 1
𝑘𝑘
, but it also reduces the data 

rate by the same factor, 1
𝑘𝑘
. To counteract this, instead of simply reducing the data rate, we 

introduce another parallel stream and multiply it by 𝑒𝑒𝑗𝑗ω0𝑘𝑘. 

What we’re doing is reducing the spectral footprint of the signal, but then we take another 

pulse sequence with the same reduced spectral footprint and place it in a neighboring 

frequency band where it doesn't cause interference. The multiplication by 𝑒𝑒𝑗𝑗ω0𝑘𝑘 modulates 

the signal, this is something familiar from digital signal processing (DSP). In the Discrete-

Time Fourier Transform (DTFT) domain, multiplying by 𝑒𝑒𝑗𝑗ω0𝑘𝑘 shifts the spectrum by ω0 

to the right.  
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So, even though you've reduced the bandwidth of the pulse, which has cut the data rate by 
1
𝑘𝑘
, you can take another narrow pulse with the same bandwidth and modulate it by 𝑒𝑒𝑗𝑗ω0𝑘𝑘. 



This modulation shifts the spectrum of the new pulse to a neighboring frequency band, 

keeping it separate from the previous pulse. You can continue this process with additional 

streams, placing them side by side in the frequency domain. Essentially, you are slicing 

your available bandwidth into smaller bins and filling those bins with these narrow-band 

sequences, all running in parallel. 

The key concept here is the use of ω0, which represents a discrete frequency. When you 

multiply by 𝑒𝑒𝑗𝑗ω0𝑘𝑘, the frequency shift in hertz depends on ω0. From your DSP knowledge, 

you know that you are using a frequency range from −𝑤𝑤
2
 to 𝑤𝑤

2
, and this type of signaling, 

whether it's sinc or a root-raised cosine, satisfies the Nyquist ISI-free criterion. Recall that 
𝑤𝑤
2

 is analogous to 𝑓𝑓𝑠𝑠
2

, where fs is the sampling frequency. So, when you modulate by 𝑒𝑒𝑗𝑗𝜔𝜔0𝑘𝑘, 

the frequency shift in hertz will be 𝜔𝜔0 × 𝑤𝑤. So, this method allows you to maintain the 

same overall bandwidth usage while placing multiple streams in parallel, which solves the 

problem of reduced data rate without expanding the total spectral footprint. 

In other words, when you select ω0, it should include a 2π multiple. For instance, if you 

choose 𝜔𝜔0 = π, that corresponds to a shift of 𝑤𝑤
2

 in the frequency domain. Similarly, if you 

choose 𝜔𝜔0 = π
4
, the shift would be around 𝑤𝑤

8
. Now, these frequency shifts essentially exist 

modulo w, as your operating range is between −𝑤𝑤
2

 and 𝑤𝑤
2

. The exact division of the 

frequency spectrum depends on multiplying by 𝑒𝑒𝑗𝑗
2π𝑚𝑚𝑚𝑚
𝐾𝐾 . 

Here's how it works: you select m as a number between 0, 1, 2, … ,𝑘𝑘 − 1. So m will take 

values from 0 up to k-1. Let me break this down step by step. 

What we're essentially doing is taking the first sequence of data, let's say you have 

𝑏𝑏0, 𝑏𝑏𝑘𝑘, 𝑏𝑏2𝑘𝑘, and so on. You group these symbols, and then you repeat them k times. So, for 

the first sequence, you'll have something like b0, b0, and up to 𝑏𝑏0𝑘𝑘. This repeated sequence 

will then be multiplied by 𝑒𝑒𝑗𝑗
2π𝑚𝑚𝑚𝑚
𝐾𝐾 , where m takes values from 0 to k-1.  

For the first sequence, let's say we choose m = 0, so you multiply by 𝑒𝑒𝑗𝑗0. In this case, you'll 

have b0, b0, b0, repeated up to k times. This corresponds to m = 0. 



Now let's take the second sequence, which corresponds to m = 1. In this case, we have b1, 

b1, repeated k times. For this sequence, you multiply by 𝑒𝑒𝑗𝑗
2π
𝑘𝑘 𝑚𝑚 , so you'll have 

𝑒𝑒𝑗𝑗0, 𝑒𝑒𝑗𝑗
2π
𝑘𝑘 , 𝑒𝑒𝑗𝑗

4π
𝑘𝑘 , … , 𝑒𝑒𝑗𝑗

2π(𝑘𝑘−1)
𝑘𝑘 , and you send this modified sequence. 
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In simpler terms, for sequence 2, you'll multiply by 𝑒𝑒𝑗𝑗
2π𝑚𝑚𝑚𝑚
𝐾𝐾 , which shifts the frequency 

spectrum by 𝜔𝜔0 = 2π
𝑘𝑘

. In hertz, this corresponds to a frequency shift of 𝑤𝑤
𝑘𝑘

. Thus, when you 

divide the sequence and repeat it k times, the spectral footprint becomes 1
𝑘𝑘
 of the original. 

However, by multiplying by 𝑒𝑒𝑗𝑗𝜔𝜔0𝑛𝑛 or 𝑒𝑒𝑗𝑗𝜔𝜔0𝑘𝑘, where 𝜔𝜔0 = 2π
𝑘𝑘

, you shift the spectrum by 𝑤𝑤
𝑘𝑘

, 

moving it into a neighboring frequency band. 

If you then take sequence 3, you would repeat the process again, shifting the spectrum 

further into the next adjacent frequency band. Another way to view this is through vectors. 

For instance, you could consider a vector of all ones, representing no spectral shift. Then, 



for sequence 2, you multiply by 𝑒𝑒𝑗𝑗
2π
𝑘𝑘 , giving you a vector of 1, 𝑒𝑒𝑗𝑗

2π
𝑘𝑘 , 𝑒𝑒𝑗𝑗

4π
𝑘𝑘 , …, effectively 

shifting the sequence's spectrum. 

These vectors are actually orthogonal. This means that if you take the sequence b0, b0, b0, 

b0 and add it to the sequence 𝑏𝑏1, 𝑏𝑏1 ⋅ 𝑒𝑒
𝑗𝑗2π𝑘𝑘 , 𝑏𝑏1 ⋅ 𝑒𝑒

𝑗𝑗4π𝑘𝑘 , …, the resulting vector will allow you 

to recover b0 and b1 by simply taking the inner product with another set of orthogonal 

vectors. This insight should give you a clearer understanding of how we approach this 

problem using orthogonal vector properties. 

Let’s now take a closer look at the case where k = 4. For this scenario, we take the block 

𝑏𝑏𝑘𝑘, 𝑏𝑏𝑘𝑘+1, 𝑏𝑏𝑘𝑘+2, 𝑏𝑏𝑘𝑘+3, and repeat each element four times, placing it into a column vector. 

For example, you would have something like bk, bk, bk, bk. Before adding the repeated 𝑏𝑏𝑘𝑘+1 

sequence to this, we multiply it by the terms 1, 𝑒𝑒𝑗𝑗
2π
4 , 𝑒𝑒𝑗𝑗

4π
4 , 𝑒𝑒𝑗𝑗

6π
4 . This multiplication is 

governed by the formula 𝑒𝑒𝑗𝑗
2π𝑚𝑚𝑚𝑚
4 , where m ranges from 0 to 3.  

So, for m = 0, you multiply by 𝑒𝑒𝑗𝑗0, while for m = 1, you multiply by 𝑒𝑒𝑗𝑗
2π
4 , 𝑒𝑒𝑗𝑗

4π
4 , 𝑒𝑒𝑗𝑗

6π
4 , and 

so on. Evaluating these terms yields, 

𝑒𝑒𝑗𝑗
2π
4 = 𝑒𝑒𝑗𝑗

π
2 = 𝑗𝑗, 𝑒𝑒𝑗𝑗

4π
4 = 𝑒𝑒𝑗𝑗π = −1, 𝑒𝑒𝑗𝑗

6π
4 = 𝑒𝑒𝑗𝑗�−

π
2� = −𝑗𝑗. 

So, for this sequence, you obtain the vector 1, j, -1, -j. 

Next, let’s take the block for 𝑏𝑏𝑘𝑘+2, which repeats similarly. The values for the exponential 

terms follow the pattern: 𝑒𝑒𝑗𝑗
4π
4 = −1, 𝑒𝑒𝑗𝑗

8π
4 = 𝑒𝑒𝑗𝑗2π = 1, 𝑒𝑒𝑗𝑗

12π
4 = 𝑒𝑒𝑗𝑗3π = −1, and so forth. 

When you repeat this for the sequence 𝑏𝑏𝑘𝑘+3, you get terms like 𝑒𝑒𝑗𝑗
6π
4 = −𝑗𝑗, 𝑒𝑒𝑗𝑗

12π
4 = −1, 

and so on.  

For convenience, I have rewritten the vector forms:  

• [1, 1, 1, 1] 

• [1, j, -1, -j] 

• [1, -1, 1, -1] 



• [1, -j, -1, j] 

The key takeaway is that all these column vectors are orthogonal to each other. Orthogonal 

means that if you take the inner product of any two different columns, the result is zero. 

For example, if you compute the inner product of the first two vectors, you get: 

1 × 1 + 1 × 𝑗𝑗 + 1 × (−1) + 1 × (−𝑗𝑗) = 0 

Thus, the vector [1, 1, 1, 1] is orthogonal to [1, j, -1, -j]. 

You can also verify the orthogonality between other pairs of columns. For instance, take 

the third and fourth vectors: 

1 × 1 + (−1) × (−𝑗𝑗) + 1 × (−1) + (−1) × 𝑗𝑗 = 0 

Therefore, these columns are also orthogonal. 
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These columns are, in fact, the columns of the Discrete Fourier Transform (DFT) matrix. 

By leveraging the DFT matrix, you can parallelize the transmission into multiple 

narrowband channels, simplifying the process. Interestingly, you don’t even need to 

manually perform the complex multiplication; the DFT operation inherently takes care of 

this task. 

To achieve the desired result, you simply need to utilize the DFT (Discrete Fourier 

Transform). Keep in mind, though, that when working with inner products, you must 

remember to take the complex conjugate when necessary. For instance, if you're checking 

the orthogonality of two complex vectors, like the first and third ones, you'll need to take 

the conjugate of the second term. For example, 1 × 1 +  𝑗𝑗 × (−𝑗𝑗) with the conjugate of -j 

becomes j2, which ensures that the vectors remain orthogonal. 

Now, the core idea here is that instead of performing narrowband channel repetition 

manually, the DFT provides an elegant and straightforward solution to achieve this 

orthogonality. Let’s take a closer look at how this works in practice. 

Consider the following matrix, which we'll call W: 

 

To verify the orthogonality, we need to compute the Hermitian transpose of W, denoted as 

WH. The Hermitian transpose involves taking the transpose of the matrix and then taking 

the conjugate of each entry. For example, the first row of W, which is (1, 1, 1, 1), becomes 

the first column of WH, and the second row, (1, j, -1, -j), becomes (1, -j, -1, j) after taking 

the conjugates. Similarly, for the other rows, you transpose and conjugate accordingly. 

So, WH would look like this: 

�

1 1 1 1
1 −𝑗𝑗 −1 𝑗𝑗
1 −1 1 −1
1 𝑗𝑗 −1 −𝑗𝑗

� 



Now, let’s perform a basic exercise: calculate 𝑊𝑊𝐻𝐻 × 𝑊𝑊. If you do the matrix multiplication 

carefully, you'll notice that the result will yield a diagonal matrix. For example, the first 

row multiplied by the first column will give you 4, while the first row multiplied by the 

second column will yield 0. This pattern continues, and you'll end up with zeroes 

everywhere except on the diagonal, where the values will be non-zero. This is a key 

property of the DFT matrix, it guarantees that these columns are orthogonal. 

However, it's important to note that this DFT matrix is not scaled, which is why WH W 

does not result in an identity matrix. Instead, the diagonal entries correspond to the energy 

in each column. Nonetheless, this is exactly the property of the DFT that we are leveraging 

to ensure that the transmissions remain orthogonal. 
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So what happens in the frequency domain when you apply the DFT? Imagine that each of 

these repeated narrowband signals gets transformed into the frequency domain. The DFT 

operation effectively spreads the energy of the time-domain sequence across discrete 

frequencies. In doing so, it ensures that the signals are sent orthogonally, thereby allowing 



multiple parallel transmissions without interference between them. This frequency-domain 

orthogonality is the very essence of what makes DFT-based transmission efficient and 

robust. 

We need to discuss the concept of sub-carriers, which are essentially sinusoidal patterns 

that carry data. For example, consider the case where k = 4. If we take b0 and repeat it 4 

times, the resulting spectrum exhibits a sinc-like pattern. Specifically, the spectrum is given 

by 

𝑠𝑠𝑠𝑠𝑠𝑠(π𝑘𝑘𝑓𝑓𝑡𝑡)
𝑠𝑠𝑠𝑠𝑠𝑠(π𝑓𝑓𝑡𝑡)

 

where ft represents the frequency. The pulse p(t) essentially acts as a window function, 

shaping the sinc function, and this pulse will cut out the relevant portion of the spectrum. 

Now, if we repeat b1 4 times, it will occupy the same spectral shape as b0, but it will be 

shifted. When you multiply b1 by the vector [1, j, -1, -j], it's equivalent to applying a 

frequency shift of π
2

 k, which corresponds to a frequency shift of 𝑤𝑤
4

. Therefore, if the 

original center frequency is 𝑤𝑤
2

, the new center frequency for b1 will be 𝑤𝑤
4

. 

How does orthogonality manifest in this context? We previously established that sequences 

like [1, 1, 1, 1] and [1, j, -1, -j] are orthogonal. This orthogonality is evident in the frequency 

domain: at 0 Hz, the b1 pulses contribute nothing to the spectrum of b0, and at 𝑤𝑤
4

, the b0 

pulses do not influence b1. Even though we haven’t split the channel into rectangular 

pulses, the orthogonality principle is still respected. This means that b0 and b1 are 

distinguishable from each other without interference from other sequences. 

Now, let’s consider b2. In this case, the shift is by π, which, when dealing with frequencies, 

corresponds to a shift of 𝑤𝑤
2

. However, since frequency shifts are cyclic, this 𝑤𝑤
2

 shift results 

in b2 appearing in two distinct places in the spectrum. In the discrete frequency domain, 

the Discrete-Time Fourier Transform (DTFT) is periodic with a period of 2π, meaning that 

shifts by π cause the sequence to repeat itself every 2π radians. Consequently, the frequency 

components wrap around, causing b2 to appear at both −𝑤𝑤
2

 and 𝑤𝑤
2

. 



Finally, consider b3. The shift for b3 is by 3𝜋𝜋
2

, which can also be viewed as −𝜋𝜋
2
 or -𝑤𝑤

4
. This 

shift places b3 in the frequency domain at −𝑤𝑤
4

. 

In summary, you have effectively parallelized the communication channels into four 

distinct narrow-band channels. These narrow-band channels, characterized by their sinc-

like spectral shapes, occupy a much narrower bandwidth compared to the overall range 

from −𝑤𝑤
2
 to 𝑤𝑤

2
. However, by using four parallel streams, each with its own narrow band, 

the total bandwidth utilized sums up to 𝑤𝑤
2

. This is because all four streams are transmitted 

simultaneously, each using the same time slots in parallel. 

It's important to note that the matrix W we discussed is technically the inverse Discrete-

Time Fourier Transform (DTFT) matrix, which is used to transform the data into the time 

domain. We will delve deeper into this in the next lecture. The crucial point here is that the 

DTFT-based approach facilitates convenient channel parallelization while maintaining 

orthogonality among the transmissions. 

In our upcoming lecture, we will further explore Orthogonal Frequency Division 

Multiplexing (OFDM), including how it can be effectively used and how the Discrete 

Fourier Transform (DFT) serves as a useful tool for equalization. Thank you for your 

attention, and I look forward to continuing our discussion. 


