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LMMSE Receiver in GNU Radio 

Welcome to this lecture on Digital Communication Using GNU Radio. I’m Kumar Appiah 

from the Department of Electrical Engineering at IIT Bombay. In our previous lecture, we 

explored the Minimum Mean Square Error (MMSE) equalizer and discussed its potential 

advantages over the Zero Forcing (ZF) equalizer. Although the MMSE equalizer is still a 

suboptimal approach, it offers a significant benefit by considering the impact of noise 

during the equalization process. 
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In this lecture, we will implement the MMSE equalizer in GNU Radio and compare its 



performance with the ZF equalizer. We’ll observe how each equalizer performs under 

different Signal-to-Noise Ratio (SNR) conditions, both in lower and higher SNR regions. 

To start, we will perform a simple MMSE equalization example using a straightforward 

channel model, where the channel effect is purely based on scaling. 

So, let’s get started. First, we will create a random source, which generates values ranging 

from 0 to 4, with each value represented by a byte. We’ll then pass this random source 

through a constellation encoder. For this example, let’s use the default QPSK constellation. 

We’ll define this as `myconst` and link it to our constellation object. 

Next, since we are running a simulation, we’ll incorporate a throttle block. Additionally, 

we’ll introduce a simple gain factor for the channel. To do this, we’ll create a range control, 

which we’ll label as `A`. This gain factor `A` will vary between 0.01 and 10. Given that 

we’re focusing on a high SNR scenario, we’ll set the default value of `A` to 1. 

Now, let’s move forward. We’ll multiply our signal by this gain factor `A` using a 

multiplier block. To set this up, we’ll add a constant source block with a value equal to 

`A`, ensuring our signal is scaled appropriately. Once we’ve scaled the signal, we’ll add 

noise to it, specifically, unit energy noise. We can do this by adding a noise source block 

to our flowgraph. 

With these elements in place, we can now analyze the performance of two equalizers: the 

Zero Forcing (ZF) equalizer and the MMSE equalizer. 

The ZF equalizer operates on a simple principle: it undoes the effect of the channel by 

applying the inverse of the channel’s gain. In this case, since our channel is represented by 

the gain factor `A`, the ZF equalizer will apply a scaling of 1
𝐴𝐴
. 

On the other hand, the MMSE equalizer requires a more nuanced approach. Instead of 

applying 1
𝐴𝐴

, the MMSE equalizer scales the signal based on the SNR. Specifically, the 

scaling factor is given by: 

Scaling Factor =
𝐴𝐴

𝐴𝐴2 + 1
 



If you’re uncertain about this formula, I encourage you to substitute the values into the 

equations we discussed in class to verify it. You’ll find that the correct scaling factor indeed 

is 𝐴𝐴
𝐴𝐴2+1

. 

Now, let’s see how this all works out in our implementation. 

To begin, we'll add a constellation sink to our flow graph. This sink will take two inputs: 

the first input will pass through a scaling factor of 1
𝐴𝐴
, and the second input will go through 

a scaling factor of 𝐴𝐴
𝐴𝐴2+1

. To implement this, we’ll add two multiplier blocks. We can simply 

copy and paste the first multiplier (`Ctrl + C, Ctrl + V`), and connect it to a constant source 

block that multiplies by 1
𝐴𝐴
. 

For the second multiplier, we’ll again copy and paste (`Ctrl + C, Ctrl + V`) and connect 

it to another constant source, but this time, the constant will be 𝐴𝐴
𝐴𝐴2+1

.  
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Now, let’s analyze what happens as we vary the value of A. When A becomes very large, 



indicating a high SNR regime, the expression 𝐴𝐴
𝐴𝐴2+1

 simplifies to approximately 1
𝐴𝐴
 because, 

in such cases, the term 1 in the denominator becomes negligible. Alternatively, you could 

rewrite this as 1
1+1𝐴𝐴

, which also leads to the same result. However, for simplicity, we'll stick 

with 𝐴𝐴
𝐴𝐴2+1

. 

Let’s execute the flow graph and observe the results. As the value of A increases, and the 

corresponding noise levels change, you'll notice that the constellation points start becoming 

more distinct. To illustrate this, let's set A to a higher value, perhaps around 100, and adjust 

the step size to 0.1 for finer control.  

With A set to this high value, we’re clearly in a high SNR regime. Here, you can observe 

that the outputs from both the Zero Forcing and MMSE equalizers are nearly identical, 

which aligns with our expectations. However, as we gradually reduce A, effectively 

lowering the SNR, you’ll start to notice that the blue points in the constellation, 

representing the Zero Forcing equalizer, begin to deviate and spread out more. 

To further enhance our observation, let’s increase the number of points generated by the 

random source and also increase the sampling rate to achieve faster results. Now, as we 

lower the SNR further by decreasing A, it becomes increasingly evident that the blue points 

are spreading out, moving further away from the red points, which represent the MMSE 

equalizer. 

This behavior highlights the key difference between the two equalizers: the MMSE 

equalizer takes noise into account, moderating the division by A and instead using a factor 

like 𝐴𝐴 + 1
𝐴𝐴
 to achieve better performance, especially in low SNR scenarios. On the other 

hand, the Zero Forcing equalizer, regardless of how small A becomes, continues to divide 

by 1
𝐴𝐴
, often resulting in nonsensical outputs, especially as A approaches zero. 

As we increase the SNR, let’s say by setting A to 0.1, the red blob, representing the MMSE 

output, becomes more discernible, but still, you can see that the MMSE equalizer restricts 

the red points from spreading too far.  
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In contrast, the Zero Forcing equalizer allows the points to spread significantly, particularly 

in low SNR conditions, illustrating its susceptibility to noise. 

As the SNR continues to increase, the differences between the two equalizers diminish, but 

it remains clear that the MMSE approach consistently offers a more robust performance 

across varying SNR levels. 

This intuitive explanation highlights why the Zero Forcing (ZF) approach, which aims to 

cancel out the channel effects regardless of the noise, is not ideal for low SNR (Signal-to-

Noise Ratio) scenarios. At very low SNRs, simply inverting the channel, even if it’s a 

single-tap channel, can lead to suboptimal results. However, as the SNR increases and 

moves into higher regimes, the difference between the ZF and MMSE (Minimum Mean 

Square Error) equalizers diminishes. In fact, when the SNR is very high, say, close to 10, 

you’ll notice that the ZF and MMSE equalizers behave almost identically, with only a slight 

difference, if any. This observation confirms our intuition that while ZF and MMSE 

equalizers converge in performance at high SNRs, they employ significantly different 

strategies to handle the problem at low SNRs. 

This was a simplified overview. Let’s now shift our focus to the running example we’ve 

been discussing, where the channel has coefficients of 1, 0.5, and -0.5. We’ll examine how 

the ZF and MMSE equalizers compare in this specific scenario. The example involves 

symbol transmission at a rate of half a symbol per second, and due to the channel 

characteristics, the received symbols are essentially convolved with P(t), which lasts 

between 1 and 4 samples with values of 1, 0.5, and -0.5. 

You may recall that we expressed this in the form of a matrix equation, which can be 

compactly written as: 

𝑈𝑈 = �

0.5 −0.5 0 0 0
0 0.5 −0.5 0 0
0 0 0.5 −0.5 0
0 0 0 0.5 −0.5

� 

Here, 𝑅𝑅𝑘𝑘 can be written as 𝑈𝑈𝐵𝐵𝑘𝑘 + 𝑊𝑊𝑘𝑘, where the symbol being detected, Bk, corresponds 

to the middle column of 𝑈𝑈. 



With this in mind, let’s open a Python prompt and piece this together to compare the actual 

MMSE and ZF equalizers. We’ll begin by importing the necessary libraries, such as 

`numpy`. 
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First, let’s write our matrix 𝑼𝑼. Remember that the columns of 𝑈𝑈 correspond to 0.5, -0.5, 

and so on, but the first column specifically contains 0.5, -0.5, followed by three zeros. The 

second column is [0, 0.5, -0.5, 0, 0], and the last column is three zeros followed by 1 and 

0.5. We’ll write these columns in row form and then transpose the matrix. 

So, 𝑼𝑼 can be defined as follows: 

 

This transpose ensures that we correctly format the matrix as needed. If you inspect your 

matrix 𝑼𝑼 now, you can verify that it matches the one we’ve discussed in the slides. 



Next, let’s revisit the ZF equalizer that we evaluated earlier. You might recall that the ZF 

equalizer, denoted as 𝐶𝐶𝑍𝑍𝑍𝑍, can be calculated using the formula: 

𝐶𝐶𝑍𝑍𝑍𝑍 = 𝑈𝑈−1 × np.array([0,1,0]) 

Here, the `@` operator in recent versions of Python allows for matrix multiplication. 

Additionally, we can take the transpose because the Hermitian and transpose are equivalent 

for real matrices. 

If you compute 𝐶𝐶𝑍𝑍𝑍𝑍 , you’ll find that it results in values such as 5
8

, 5
8

, 5
8

,−1
8

, 2
8
, which 

matches the solution we derived earlier. 

Now, let’s evaluate the MMSE equalizer using a similar approach. Remember, to compute 

the MMSE equalizer, we’ll need the Es term, which corresponds to the signal-to-noise ratio 

(SNR). Let’s proceed to write out the formula for the MMSE equalizer. 

Let's assume a signal energy Es, say 𝐸𝐸𝑠𝑠 = 10, which corresponds to 10 dB. To calculate 

the matrix 𝑅𝑅 , we will use 𝑅𝑅 = 𝑈𝑈 × 𝑈𝑈𝑇𝑇 + 1
𝐸𝐸𝑠𝑠

× 𝐶𝐶𝑤𝑤 , where 1
𝐸𝐸𝑠𝑠

 is multiplied by the noise 

covariance matrix 𝐶𝐶𝑤𝑤. Given that our noise is independent and identically distributed (iid) 

across samples, we can take the noise covariance matrix to be the identity matrix. Next, we 

need to compute 𝑅𝑅−1 × 𝑃𝑃, which in this case is 𝑅𝑅−1 × 𝑈𝑈0. 

Let's proceed with this calculation. To get 𝑈𝑈0, which corresponds to 𝑈𝑈𝑘𝑘, remember we are 

interested in bk. In our matrix 𝑼𝑼, the middle column multiplies bk, the preceding column 

multiplies bk-1, and the following column multiplies bk+1. Therefore, we need to extract the 

middle column of 𝑼𝑼. This can be done by specifying 𝑼𝑼[:, 1], where the colon selects all 

rows and the 1 indicates the second column. 

Once we have 𝑈𝑈0, we can evaluate the inverse of 𝑅𝑅 using `np.linalg.inv()`. Let's store this 

result as `cmmse` and display it. 

Now, let's increase the SNR to 100, which corresponds to 20 dB. You’ll notice that the 

coefficients start to change, they begin to resemble those of the Zero Forcing equalizer. To 

illustrate this, let's compare the Zero Forcing equalizer directly below. As you can see, the 



coefficients start to converge. If we further increase the SNR to 1000 (30 dB), you'll 

observe that the coefficients become almost indistinguishable. And if we push the SNR to 

10,000 (40 dB), the coefficients are nearly identical to those of the Zero Forcing equalizer. 
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Why does this happen? The reason is that the expression 𝑅𝑅−1 × 𝑃𝑃 , where 𝑃𝑃 = 𝑈𝑈0 , 

essentially simplifies to the same expression as 𝑈𝑈𝑇𝑇 × 𝑈𝑈−1 × 𝐸𝐸0 in the Zero Forcing case, 

as the contribution of the noise term diminishes to zero. You can verify this numerically or 

intuitively, when there is no noise, the optimal strategy is simply to cancel the interference 

entirely. 

Thus, you can use this numerical approach to confirm that the Zero Forcing and MMSE 

equalizers are nearly identical at very high SNR levels. To push this even further, let's add 

another zero to the SNR, increasing it to 50 dB. At this level, the difference between the 

two equalizers is so minimal that their coefficients differ only in the fifth or sixth decimal 

place. 

Our next task will be to implement this in a flow graph to directly compare the performance 



of the Zero Forcing and MMSE equalizers. We will build on the flow graph we used earlier 

for the Zero Forcing equalizer. If you don’t have this flow graph, I encourage you to revisit 

the related GNU Radio lecture on Zero Forcing and follow along to construct it. This will 

allow us to expand upon it for the comparison with the MMSE equalizer. 

The first step here will be to add a variable corresponding to the matrix 𝑼𝑼. Let's use 

Control-F (or Command-F on Mac) to find where to insert this variable. But before 

proceeding, let's ensure we've imported `numpy`, as it will be very useful. 
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Let's begin by importing the necessary libraries. We'll start with the import block, 

specifically `import numpy as np`. With `numpy` imported, the first step is to create the 

variable. You can do this by using Control-F (or Command-F on a Mac) to search for the 

variable insertion point. We'll name this variable ̀ u` and assign it a value using ̀ np.array`, 

following the same format we used earlier for the matrix columns. After defining the first, 

second, and third columns, we'll transpose the matrix to complete the setup. Now, our 

matrix is ready. 



The next task is to actually construct the filter. To achieve this, we'll need to account for 

the SNR (Signal-to-Noise Ratio). The noise standard deviation (noise std) will serve as our 

proxy for SNR, providing a measure of noise power. Given that we are using a normalized 

constellation, the signal power is 1. Therefore, our Es will be simply 1
noise std2

. 

Now, to perform a comparison between the Zero Forcing and MMSE equalizers, we'll first 

remove any extra constellation points. We'll adjust the inputs so that there are only two: 

the first corresponding to the Zero Forcing based constellation, and the second to the 

MMSE based constellation. For the MMSE based constellation, we'll create another pair 

of interpolating FIR filters that use coefficients determined by the MMSE equalizer. 

We'll start by duplicating the current setup with Control-C and Control-V. These 

coefficients, however, will be calculated at runtime. Double-click to edit the filter block, 

and instead of static coefficients like 2/8, 5/8, 5/8, we'll calculate them by performing 

𝑅𝑅−1 × 𝑃𝑃. Specifically, we'll compute this with `np.linalg.inv()` on 𝑈𝑈 × 𝑈𝑈𝑇𝑇 + 1
noise std2

×

np.i5. The result is the inverse multiplied by 𝑈𝑈1. 

Let's see how this works. If you encounter an issue, such as a singular matrix when the 

noise std is 0, don't worry, this can be resolved by setting the noise std to a small value like 

0.01, which will avoid zero-related errors. Now, everything should run smoothly.  

However, we don't need all the coefficients for this particular filter. We only need the first, 

third, and fifth coefficients. To do this, we'll first reverse the sequence and then select the 

coefficients in reverse order. To reverse the sequence, simply use `[::-1]`. After that, to 

select every other coefficient, use `::2`.  

As a sanity check, when the SNR is very low, you'll notice that the coefficients should 

approximate 0.25 for the first and 0.625 for the last. Now, I'll duplicate this interpolating 

filter with Control-C and paste it. Then, by double-clicking to edit, I'll adjust the selection 

to include the first, third, and fifth coefficients instead of the first, third, and fourth. 

I’m going to start by setting a value of one here. Using `1::2` ensures that I get the second 

and fourth coefficients. This results in values of -0.125 and -0.625, which simplifies the 



process of constructing the MMSE equalizer significantly. 

Let’s make everything visible for better clarity. Now that we have the MMSE equalizer set 

up, we need to connect the corresponding filters. To do this, I'll add an adder block using 

Control-C and Control-V to sum these two signals. We can then proceed to compare the 

constellations. 

Next, let’s make the noise standard deviation (`noise std`) a variable. We’ll delete the 

current setting, use Control-F (or Command-F), and search for “variable.” We'll define this 

variable as `noise std` and set its initial value to 0.1. At this setting, you’ll notice that the 

constellations look somewhat similar. However, the real insight comes when the SNR 

degrades further. 
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Let’s increase the `noise std` to 0.3 and also raise the number of samples to 10,000. You’ll 

observe that both constellations exhibit some spread. On closer inspection, the red 

constellation (Zero Forcing) shows slightly less spread compared to the blue constellation 

(MMSE). By increasing the number of constellation points and examining the results, 



you’ll see that the spread for the red constellation is indeed slightly less. 

This difference arises because the MMSE equalizer considers the impact of noise. 

Increasing the `noise std` to 0.4 places us in a lower SNR range. At this level, the blue 

points (MMSE) spread much farther than the red points (Zero Forcing), indicating that the 

MMSE equalizer performs somewhat better. While the improvement might not be 

dramatic, it's noticeable. With an even higher noise level, such as 0.8, the performance of 

both equalizers deteriorates, but the MMSE equalizer still manages to keep the red points 

from spreading as much as the blue ones. Increasing the sample rate helps visualize this 

effect more clearly, revealing that at high noise levels, the blue points scatter widely due 

to significant noise amplification, while the red points remain somewhat more 

concentrated. 

It’s important to note that at very low SNRs, the MMSE equalizer also struggles because 

it doesn’t fully mitigate the noise impact. However, it still generally outperforms the Zero 

Forcing equalizer. One point to remember is that minimizing the symbol error rate 

optimally requires maximum likelihood sequence estimation, such as the Viterbi algorithm. 

The MMSE equalizer minimizes the mean squared error, which isn’t the same as 

minimizing the symbol error rate directly. 

In summary, Zero Forcing equalizers work well at very high SNRs, MMSE is effective at 

medium SNRs, and both approaches converge at high SNRs. At very low SNRs, both 

perform poorly, and when SNR is extremely low, you might need to accept reduced data 

rates or performance. In this lecture, we explored the MMSE equalizer for both single-tap 

and more complex channel responses. The MMSE equalizer has notable advantages over 

Zero Forcing in low SNR scenarios due to its ability to limit noise enhancement, even 

though it’s suboptimal. At high SNRs, the MMSE and Zero Forcing equalizers perform 

similarly. Using suboptimal equalizers is a practical approach that simplifies receiver 

implementation, and you can further explore this through various GNU Radio blocks. 

Thank you. 


