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Hello and welcome to this lecture on Digital Communication using GNU Radio. My name 

is Kumar Appiah, and I am from the Department of Electrical Engineering at the Indian 

Institute of Technology, Bombay. In this session, we will continue our exploration of 

suboptimal equalization techniques. Over the past few lectures, we have focused on zero-

forcing equalization. In zero-forcing, the primary goal is to design an equalization filter 

that completely eliminates intersymbol interference (ISI) by forcing the interference to 

zero. 
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However, as we observed both in our theoretical discussions and through GNU Radio 

simulations, zero-forcing comes with a significant drawback: it can lead to substantial noise 

enhancement. This noise enhancement is particularly detrimental when operating in 

environments with low signal-to-noise ratios (SNR). Consequently, the zero-forcing 

equalizer may not be the best choice in scenarios where the SNR is very low. 

In today’s lecture, we will explore another suboptimal equalization technique known as the 

Linear Minimum Mean Squared Error (MMSE) equalizer. Here, MMSE stands for 

Minimum Mean Squared Error. This approach takes a statistical perspective, aiming to 

minimize the expected squared error between the detected symbol and the transmitted 

symbol. This minimization essentially defines our equalizer. 
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Similar to other methods that involve minimizing squared error, the use of squared error in 

MMSE allows for a straightforward computation of the equalizer. By differentiating the 

squared error with respect to the filter coefficients and setting the result to zero, we can 

derive the filter coefficients. This is precisely what we will examine in this lecture. 



As the name suggests, our objective is to minimize the mean squared error. We can think 

of this error as our objective function, denoted by J. The function J represents the mean 

squared error and is a function of the filter coefficient vector c. The vector c contains the 

filter coefficients, much like in previous discussions. 

To define the error, we consider the expectation 𝐸𝐸[|𝑐𝑐𝐻𝐻𝑟𝑟𝑘𝑘 − 𝑏𝑏𝑘𝑘|2], where cH represents the 

Hermitian (or conjugate transpose) of c, 𝑟𝑟𝑘𝑘 is the received symbol vector, and bk is the 

transmitted symbol, which is typically a complex number such as a QPSK symbol. Here, 

both c and 𝑟𝑟𝑘𝑘 are vectors, so I use the underscore notation to represent them. 

When we expand the expression for J(c), we obtain a specific form that we will delve into 

further in this lecture. For clarity, let's start with the expression 𝑐𝑐𝐻𝐻𝑟𝑟𝑘𝑘 − 𝑏𝑏𝑘𝑘. 

As mentioned earlier, bk is a symbol, a complex number like a QPSK symbol, whereas c 

and 𝑟𝑟𝑘𝑘  are vectors. Thus, you might sometimes see 𝑐𝑐𝐻𝐻𝑟𝑟𝑘𝑘  represented as 𝑟𝑟𝑘𝑘𝑇𝑇𝑐𝑐 , which is 

another notation that may be used in different contexts. 
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When dealing with the expression 𝑐𝑐𝐻𝐻𝑟𝑟2, one effective approach to handle these types of 

expectations is to express the modulus square as 𝑐𝑐𝐻𝐻𝑟𝑟  multiplied by its Hermitian 

counterpart. Remember that this is a scalar quantity, but we will still use the Hermitian 

notation, which is essentially the same as the conjugate in this context. So, this expression 

can be written as: 

𝐸𝐸[(𝑐𝑐𝐻𝐻𝑟𝑟𝑘𝑘 − 𝑏𝑏𝑘𝑘)(𝑐𝑐𝐻𝐻𝑟𝑟𝑘𝑘 − 𝑏𝑏𝑘𝑘)𝐻𝐻] 

I am deliberately using the Hermitian operator here because it allows us to conveniently 

swap the order of 𝑟𝑟 and 𝑟𝑟𝑘𝑘, facilitating a more straightforward representation. Expanding 

this, we have: 

𝐸𝐸[𝑐𝑐𝐻𝐻𝑟𝑟𝑘𝑘 − 𝑏𝑏𝑘𝑘] = 𝐸𝐸[𝑟𝑟𝑘𝑘𝐻𝐻𝑐𝑐 − 𝑏𝑏𝑘𝑘∗] 

Here, since bk is a scalar, its Hermitian is simply its complex conjugate, denoted as 𝑏𝑏𝑘𝑘∗ . 

Applying the Hermitian operator to 𝑐𝑐𝐻𝐻𝑟𝑟𝑘𝑘 is equivalent to taking the conjugate, so we can 

write it as 𝑟𝑟𝑘𝑘𝐻𝐻𝑐𝑐. You can verify that this is indeed correct. 

Expanding further, we get: 

𝑐𝑐𝐻𝐻𝐸𝐸[𝑟𝑟𝑘𝑘𝑟𝑟𝑘𝑘𝐻𝐻]𝑐𝑐 + 𝐸𝐸[𝑏𝑏𝑘𝑘𝑏𝑏𝑘𝑘∗] 

Notice that I can take c outside the expectation because c is a fixed vector, not dependent 

on the specific values of 𝑟𝑟 or b. It is a constant vector determined by the filter design, not 

by the individual random variables. 

Now, when expanding the terms, I separate the cross terms: 

𝐸𝐸[𝑐𝑐𝐻𝐻𝑟𝑟𝑘𝑘𝑏𝑏𝑘𝑘∗ − 𝑏𝑏𝑘𝑘𝑟𝑟𝑘𝑘𝐻𝐻𝑐𝑐] 

We have now introduced the cross term 𝑐𝑐𝐻𝐻𝑟𝑟𝑘𝑘𝑏𝑏𝑘𝑘∗ − 𝑏𝑏𝑘𝑘𝑟𝑟𝑘𝑘𝐻𝐻𝑐𝑐. If you look closely, this term is 

exactly what we’ve written before, but it's often convenient to express it as twice the real 

part: 

2Re([𝑐𝑐𝐻𝐻𝑟𝑟𝑘𝑘𝑏𝑏𝑘𝑘∗]) 
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This expression is useful because it simplifies the differentiation process. You can treat the 

real part of 𝑐𝑐𝐻𝐻𝑟𝑟𝑘𝑘𝑏𝑏𝑘𝑘∗  as 𝑟𝑟𝑘𝑘𝐻𝐻𝑐𝑐, and it allows us to move the expectation operator outside, which 

simplifies our calculations. 

Now, focusing on our objective function J, we need to differentiate it with respect to c. By 

setting the derivative ∂𝐽𝐽
∂𝑐𝑐

= 0, we essentially differentiate each entry of c individually, its 

real and imaginary parts, and set them to zero. This approach is well-documented in linear 

algebra or matrix calculus references. 

Upon differentiating, we obtain: 

𝑐𝑐𝐻𝐻𝐸𝐸[𝑟𝑟𝑘𝑘𝑟𝑟𝑘𝑘𝐻𝐻]𝑐𝑐 − 2𝐸𝐸[𝑏𝑏𝑘𝑘∗𝑟𝑟𝑘𝑘] = 0 

Here, p represents the expectation 𝐸𝐸[𝑏𝑏𝑘𝑘∗𝑟𝑟𝑘𝑘]. By expanding each entry of c into its real and 

imaginary parts, performing the differentiation with respect to these parts, and setting the 

resulting expressions to zero, you can derive this form: 



𝑝𝑝 = 𝐸𝐸[𝑏𝑏𝑘𝑘∗𝑟𝑟𝑘𝑘] 

This gives us a clear path to computing the filter coefficients based on the MMSE criterion. 

Let's break this down for better clarity and understanding. 
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Consider a scenario where you have a matrix R that is 𝑘𝑘 × 𝑘𝑘, and vectors c and p that are 

𝑘𝑘 × 1. To solve the equation Rc = p, if the matrix R is invertible, then c can be obtained 

by computing 𝑐𝑐 = 𝑅𝑅−1𝑝𝑝. This type of equation is quite common in communication and 

signal processing applications. 

The matrix R often exhibits certain properties that simplify its evaluation. For example, the 

entries of R may follow a particular pattern, like being of a Toeplitz form, which is a 

structured matrix with constant diagonals. When R is invertible, the solution to c is given 

by 𝑐𝑐 = 𝑅𝑅−1𝑝𝑝. 

To ensure that this solution represents a minimum, you can evaluate the second derivative 

of the objective function J with respect to c. The resulting values will confirm that c indeed 



corresponds to a global minimum, meaning that this solution is optimal across all possible 

values of c. 

This optimal c is referred to as 𝑐𝑐MMSE. While you can select various filters, 𝑐𝑐MMSE is the 

specific filter that minimizes the Minimum Mean Squared Error (MMSE), which is our 

objective function J. 

Now, let's revisit the expression 𝑐𝑐𝐻𝐻𝑅𝑅𝑐𝑐 + |𝑏𝑏𝑘𝑘|2. Here, we note that the expectation of |𝑏𝑏𝑘𝑘|2 

is denoted by Es, which represents the signal energy. Since Es does not depend on the 

realization, its derivative with respect to c is zero. So, when you differentiate the equation 

𝐽𝐽 = 𝑐𝑐𝐻𝐻𝑅𝑅𝑐𝑐 + |𝑏𝑏𝑘𝑘|2 with respect to c, you arrive at: 

2𝑅𝑅𝑐𝑐 −  2𝑝𝑝 =  0 

Here, 𝑅𝑅 = 𝐸𝐸[𝑟𝑟𝑟𝑟𝐻𝐻] and 𝑝𝑝 = 𝐸𝐸[𝑏𝑏𝑘𝑘∗𝑟𝑟𝑘𝑘𝐻𝐻], where p is known as the cross-correlation matrix. 

Therefore, the solution for the MMSE equalizer is: 

𝑐𝑐MMSE = 𝑅𝑅−1𝑝𝑝 

where 𝑅𝑅 = 𝐸𝐸[𝑟𝑟𝑟𝑟𝐻𝐻] and 𝑝𝑝 = 𝐸𝐸[𝑏𝑏𝑘𝑘∗𝑟𝑟𝑘𝑘]. 

If you recall from our previous discussions, we had a structure in which we grouped several 

symbols together, such as grouping five symbols in our running example. We expressed 𝑟𝑟𝑘𝑘 

as: 

𝑟𝑟𝑘𝑘 = 𝑢𝑢𝑏𝑏𝑘𝑘 + 𝑤𝑤𝑘𝑘 

Here, 𝑏𝑏 is a column vector containing the symbols 𝑏𝑏𝑘𝑘−1, bk, and 𝑏𝑏𝑘𝑘+1. Let's evaluate the 

matrix 𝑅𝑅 = 𝐸𝐸[𝑟𝑟𝑘𝑘𝑟𝑟𝑘𝑘𝐻𝐻]. Since we are assuming that the processes are wide-sense stationary, 

the matrix R simplifies to: 

𝑅𝑅 = 𝐸𝐸[𝑢𝑢𝑏𝑏𝑘𝑘𝑏𝑏𝑘𝑘𝐻𝐻𝑢𝑢𝐻𝐻] + 𝐸𝐸[𝑤𝑤𝑘𝑘𝑤𝑤𝑘𝑘𝐻𝐻] 

Since the cross-terms involving 𝑤𝑤𝑘𝑘 and bk are zero due to their uncorrelated nature, the 

matrix simplifies to: 



𝑅𝑅 = 𝑢𝑢𝐸𝐸𝑠𝑠𝑢𝑢𝐻𝐻 + 𝐶𝐶𝑤𝑤 

where 𝐸𝐸𝑠𝑠 = 𝐸𝐸[|𝑏𝑏𝑘𝑘|2] is the signal energy, and 𝐶𝐶𝑤𝑤 is the noise covariance matrix. 

To write this expression in an expanded form, note that 𝑢𝑢𝑢𝑢𝐻𝐻 can be expressed as the sum 

of the outer products of its columns. This expansion is straightforward and aligns with what 

we have discussed so far. 

Now, considering the vector p, recall that 𝑟𝑟𝑘𝑘  was expressed as 𝑢𝑢𝑏𝑏𝑘𝑘 + 𝑤𝑤𝑘𝑘 . The vector 𝑏𝑏 

contains three entries, and only one of these corresponds to bk. Therefore, when substituting 

𝑟𝑟𝑘𝑘 into p = 𝐸𝐸[𝑏𝑏𝑘𝑘∗𝑟𝑟𝑘𝑘𝐻𝐻], the term involving 𝑤𝑤𝑘𝑘 vanishes due to the uncorrelation between 𝑤𝑤𝑘𝑘 

and bk. 

Let's go through this concept step by step, ensuring both clarity and a deeper understanding. 
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 When we consider the expression 𝑢𝑢𝑏𝑏𝑘𝑘, only the term involving bk remains significant, with 

all other terms effectively going to zero. This is because p will only select the column of 𝑢𝑢 



corresponding to bk. We can denote this specific column as 𝑢𝑢0. To visualize this, imagine 

that each column of 𝑢𝑢 corresponds to a different entry of the vector 𝑏𝑏, which includes terms 

like 𝑏𝑏𝑘𝑘−2,  𝑏𝑏𝑘𝑘−1, 𝑏𝑏𝑘𝑘, 𝑏𝑏𝑘𝑘+1 , and 𝑏𝑏𝑘𝑘+2 . The only column that matters for p is the one 

associated with bk, which is precisely what we're observing. 

Now, let’s build on this and derive the Minimum Mean Square Error (MMSE) solution, 

𝑐𝑐MMSE. Recall that 𝑐𝑐MMSE = 𝑅𝑅−1𝑝𝑝. Here's a neat trick: since Es (the signal energy) is just a 

scalar, we can introduce it into the expression by multiplying through by 1
𝐸𝐸𝑠𝑠

. This allows us 

to rewrite the equation as: 

𝑐𝑐MMSE = �𝑢𝑢𝑢𝑢𝐻𝐻 +
𝐶𝐶𝑤𝑤
𝐸𝐸𝑠𝑠
�
−1

𝑢𝑢0 
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If 𝐶𝐶𝑤𝑤, the noise covariance matrix, is equal to 𝑁𝑁0
2

× 𝐼𝐼, this expression takes on a particularly 

elegant form. Here’s where things get interesting: the fundamental difference between Zero 



Forcing (ZF) and MMSE is that the 1
𝐸𝐸𝑠𝑠

 term in the MMSE solution essentially weights the 

equalization filter based on the noise level.  

Let's engage in a thought experiment to understand this better. If the entries of 𝐶𝐶𝑤𝑤, which 

represent noise, have variances much larger than Es, then the matrix 𝐶𝐶𝑤𝑤
𝐸𝐸𝑠𝑠

 will, upon 

inversion, yield values close to zero. This implies that in a low Signal-to-Noise Ratio 

(SNR) scenario, the MMSE equalizer might almost entirely suppress the signal, leading to 

no useful information being recovered. 

On the other hand, in a high SNR regime, where the noise is minimal, 𝐶𝐶𝑤𝑤 becomes nearly 

zero. In such cases, the MMSE solution begins to resemble the Zero Forcing approach. As 

the SNR approaches infinity, the MMSE equalizer essentially becomes equivalent to the 

ZF equalizer. This phenomenon will become clearer when we simulate it in GNU Radio. 

The key takeaway is that the MMSE equalizer offers a sort of "slider" that intuitively 

balances the weight given to the received signal, depending on the noise level. 
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In high SNR conditions, the MMSE equalizer behaves like a ZF equalizer, whereas in low 

SNR conditions, it avoids blindly inverting the channel, which would otherwise amplify 

the noise. Instead, it strikes a trade-off to achieve the minimum mean squared error, which, 

we hope, results in better performance. 

Now, let's consider why the MMSE equalizer might be preferable. The MMSE equalizer 

maximizes the Signal-to-Interference Ratio (SIR) for linear equalizers. To explore this, we 

can break down the received signal 𝑟𝑟𝑘𝑘: 

𝑟𝑟𝑘𝑘 = 𝑢𝑢𝑏𝑏𝑘𝑘 + 𝑤𝑤𝑘𝑘 

This can be decomposed into two parts: 

𝑟𝑟𝑘𝑘 = 𝑏𝑏𝑘𝑘𝑢𝑢0 + �𝑏𝑏𝑗𝑗𝑢𝑢𝑗𝑗
𝑗𝑗≠0

+ 𝑤𝑤𝑘𝑘 

Here, the first term corresponds to the desired signal power, while the remaining terms 

represent interference from neighboring symbols and noise. 

(Refer Slide Time: 25:38) 

 



When we compute 𝑐𝑐MMSE
𝐻𝐻 𝑟𝑟𝑘𝑘, we get: 

𝑐𝑐MMSE
𝐻𝐻 𝑟𝑟𝑘𝑘 = 𝑏𝑏𝑘𝑘𝑐𝑐MMSE

𝐻𝐻 𝑢𝑢0 + �𝑏𝑏𝑗𝑗𝑐𝑐MMSE
𝐻𝐻 𝑢𝑢𝑗𝑗

𝑗𝑗≠0

+ 𝑐𝑐MMSE
𝐻𝐻 𝑤𝑤𝑘𝑘 

Here, the first part corresponds to the desired signal, while the second part represents 

interference from other symbols, and the third part is due to noise. To compute the SIR, we 

take the ratio of the power of the desired signal to the power of the interference and noise. 

The expression for SIR becomes: 

SIR =
𝐸𝐸𝑠𝑠�𝑐𝑐MMSE

𝐻𝐻 𝑢𝑢0�
2

𝐸𝐸𝑠𝑠 ∑ �𝑐𝑐MMSE
𝐻𝐻 𝑢𝑢𝑗𝑗�

2
𝑗𝑗≠0 + 𝑐𝑐MMSE

𝐻𝐻 𝐶𝐶𝑤𝑤𝑐𝑐MMSE

 

If 𝐶𝐶𝑤𝑤 (the noise covariance matrix) approaches zero, the SIR simplifies to the ratio of the 

desired signal power to the interference power. In the case of ZF equalization, the filter c 

is chosen such that the interference terms are zero, meaning 𝑐𝑐𝐻𝐻𝑢𝑢𝑗𝑗 = 0  for all 𝑗𝑗 ≠ 0 , 

aligning the filter with 𝑢𝑢0 and ignoring the others. 
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However, in MMSE equalization, while the interference terms are not exactly zero, the 

filter also takes into account the noise, achieving a better balance between minimizing 

interference and controlling noise amplification. This is how MMSE improves the overall 

SIR, providing an advantage over ZF, especially in scenarios with varying SNR levels. 

Now, let's discuss the MMSE equalizer in more detail. The key idea here is that the signal-

to-interference ratio (SIR) is maximized when you choose C as 𝐶𝐶MMSE. In fact, among all 

linear equalizers, it can be proven that 𝐶𝐶MMSE is the optimal choice for maximizing the SIR. 

Although I won’t go into the detailed proof here, the essential point is that minimizing the 

mean squared error is equivalent to maximizing the SIR. 

Another important point is that as the Signal-to-Noise Ratio (SNR) approaches infinity, the 

MMSE equalizer effectively becomes the Zero Forcing (ZF) equalizer. This makes 

intuitive sense: if the term 𝐶𝐶†𝐶𝐶𝑤𝑤𝐶𝐶  (where 𝐶𝐶†  represents the Hermitian transpose of C) 

approaches zero, you can select C such that it orthogonalizes with respect to the interfering 

signals and only has an inner product with the desired signal 𝑢𝑢0. In such a scenario, the 

SIR becomes extremely large, approaching infinity. While this is an intuitive 

understanding, we will also demonstrate this numerically, and we’ll explore it further in 

the next lecture. 

An interesting extension of these concepts is the idea of adaptive equalization. In practical 

systems, the channel impulse response or frequency response varies over time. For 

instance, if you're on a call while moving around, the environment around you changes, 

causing the channel characteristics observed by your phone to change as well. This means 

that the equalizer might need frequent retraining or recalibration. 

Rather than retraining the system every time the channel changes, an alternative approach 

is to track the channel dynamically. This adaptive method involves learning the changes in 

the channel gradually, rather than relearning it from scratch. For example, as you walk 

around during a call, your phone can learn and adapt to the evolving channel conditions in 

real-time. This method is known as adaptive equalization.  



There are two primary types of adaptive equalization: training-based and blind. In training-

based adaptive equalization, the transmitter (e.g., the base station) sends specific 

information to the receiver, allowing it to track changes in the channel. On the other hand, 

blind equalization requires the receiver to adapt without explicit training data, it must infer 

the channel characteristics from the received signal alone, without prior knowledge of the 

exact data sequence or modulation scheme.  
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In practical systems, both training-based and blind approaches are often used in 

combination. Some common algorithms for adaptive equalization include the Least Mean 

Squares (LMS) algorithm, the Recursive Least Squares (RLS) algorithm, and the Decision 

Feedback Equalizer (DFE). These methods build upon the equalization techniques we've 

discussed and allow for continuous adaptation to the channel, thereby enhancing 

performance without the need for constant retraining. 

To summarize, equalization is essential whenever the channel impulse response affects 

symbol detection. The optimal strategy would be to use Maximum Likelihood Sequence 



Detection (MLSD), but this can be prohibitively complex, especially with a large number 

of samples. While the Viterbi algorithm simplifies this process, it still requires state 

tracking and channel estimation, which can be challenging. As a result, suboptimal 

approaches like Zero Forcing (ZF) and MMSE are often used because they are simpler to 

implement, though they come with a trade-off in performance, particularly in low SNR 

conditions. 

Adaptive equalization extends these techniques by allowing the system to learn and adapt 

to the channel dynamically. This approach is much more efficient and effective because it 

enables real-time adaptation without the need to stop and retrain the system continuously. 

These adaptive techniques are widely used in many communication standards and 

technologies that you encounter daily. 

In our next lecture, we will implement the MMSE equalizer using GNU Radio and observe 

the differences between MMSE and ZF equalization. After that, we’ll move on to other 

topics, including Orthogonal Frequency-Division Multiplexing (OFDM) in wireless 

communications. Thank you for your attention, and I look forward to our next session. 


