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Zero forcing Receiver in GNU Radio 

Welcome to this lecture on Digital Communication Using GNU Radio. My name is Kumar 

Appiah, and I am from the Department of Electrical Engineering at IIT Bombay. As you 

may recall, we have been discussing suboptimal equalization algorithms. In this context, 

our goal today is to implement the zero-forcing equalizer. The zero-forcing equalizer is 

notably simpler to implement and aims to completely eliminate interference whenever 

possible.  
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We will use GNU Radio to first implement a zero-forcing equalizer for a sample-sized 



system, an equalizer that operates at the sample rate. We will then extend this to work with 

the equalizer we have been using as our running example, where the receiver samples at 

twice the rate of the symbols sent by the transmitter. 

Let's dive into the GNU Radio implementation. We will start by exploring inter-symbol 

interference with a simple PSK example to observe how it affects our system. For 

simplicity, we will conduct a baseband simulation. 

First, we need to add a random source. Press `Ctrl + F`, type "random," and select the 

random source. Double-click the random source and set the type to "byte" with values 

ranging from 0 to 4. Next, we will introduce our constellation object and constellation 

encoder to set up a QPSK constellation. Press `Ctrl + F`, type "CONSTANT," and you 

will find the constellation encoder and constellation object. Place these components onto 

the workspace. 

Double-click the constellation object and name it "myconst." The constellation encoder 

will be configured as an instance of "myconst." Connect the random source to the encoder. 

We need to add a throttle to control the simulation rate. Press `Ctrl + F` (or `Cmd + F` on 

macOS), type "throttle," and place it into the flowgraph. 

Now, let’s add a channel to our setup. We’ll keep the channel simple by using a finite 

impulse response (FIR) filter to introduce inter-symbol interference. We are performing a 

one-symbol-per-sample simulation and will use an FIR filter to model the channel. Press 

`Ctrl + F` (or `Cmd + F`), type "interpolating FIR filter," and add it to the flowgraph. 

Connect this FIR filter to the rest of the components, leaving flexibility for adjusting the 

taps. 

Double-click the interpolating FIR filter and set the taps to "1, ISI," where "ISI" represents 

inter-symbol interference. We will control the value of ISI using a QT GUI range. Press 

`Ctrl + F` (or `Cmd + F`), type "range," and add the range component to the flowgraph. 

Configure the ISI range to vary between -1 and 1. 

This setup will allow us to explore the impact of inter-symbol interference and implement 



the zero-forcing equalizer effectively. 

Let's start by setting the default value to 0. We will configure it to range from -1 to 1 with 

a step size of 0.1. This parameter represents a certain amount of the signal being received. 

Additionally, we will introduce some noise into the system. Press `Ctrl + F` (or `Cmd + 

F`), search for "range," and add another range component. We will name this range "noise 

std," standing for noise standard deviation. Set its standard value to 0, with a range from 0 

to 3 and a step size of 0.1. 

Next, add a noise source by pressing `Ctrl + F` (or `Cmd + F`), typing "noise," and 

selecting the noise source. Connect this noise source to the flowgraph by pressing `Ctrl + 

F` (or `Cmd + F`) and selecting "add." 
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Once the components are added, we can inspect both the time domain view and the QT 

GUI constellation sink. Press `Ctrl + F` (or `Cmd + F`), select "time sink" for the time 

domain view, and similarly, add the QT GUI constellation sink. Connect the QT GUI 

constellation sink to the range component we previously set for the noise standard 



deviation. Ensure that the amplitude of the noise is controlled by this "noise std" parameter. 

Initially, we will start with no noise. When observing the constellation, it should display a 

standard QPSK constellation with values like 1+𝑗𝑗
√2

 and so on, which is why the values range 

between − 1
√2

 and 1
√2

. Everything should look as expected. Now, introduce a small amount 

of noise to see its effect. 

With noise introduced, the constellation will start to show distortions. Next, let's focus on 

introducing inter-symbol interference (ISI). Temporarily, we will only view the real part 

of the signal. Adding ISI will cause noticeable splitting in the constellation. This splitting 

occurs because the symbols are not reproduced faithfully at the receiver. The received 

signal is convolved with a filter of the form δ[𝑛𝑛] + ISI ⋅ δ[𝑛𝑛 − 1]. For example, if ISI is 

0.2, the received signal Y[n] is actually 𝑋𝑋[𝑛𝑛] + 0.2 ⋅ 𝑋𝑋[𝑛𝑛 − 1], which results in a QPSK 

constellation superimposed with a smaller QPSK constellation. 
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In fact, if you examine the constellation closely, the distance between the center of this 



mini QPSK constellation and any of the standard QPSK constellation points will be 

approximately 0.3 times the original distance. This indicates that the system is less robust 

to noise due to this effect. 

Our first step to address this is to perform zero-forcing filtering. To implement zero-forcing 

filtering, we will construct the inverse filter. Given that the filter's impulse response is 

δ[𝑛𝑛] + ISI ⋅ δ[𝑛𝑛 − 1], its Z-transform is 1 + 𝑍𝑍−1 ⋅ ISI. To apply this, press `Ctrl + F` (or 

`Cmd + F`), search for "interpolating FIR filter," and add the filter to the flowgraph. 

Let's start by double-clicking on the filter. We can't use a standard FIR filter for this 

purpose; instead, we need to use an IIR filter. Press `Ctrl + F` (or `Cmd + F`), search for 

"IIR filter," and select it. Set it to operate in complex-to-complex mode. The "flow taps" 

setting is acceptable for our case.  
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For an IIR filter, you need to specify both the feedforward taps and the feedback taps. In 

this instance, the feedforward tap is set to 1, and the feedback taps are 1 and ISI. 

Additionally, ensure that the "old style of taps" setting is turned off. This setting was 



originally used for compatibility with MATLAB or other software-based filter designs but 

is no longer necessary. 

So, we set it to false. This filter now represents 1
1+𝑍𝑍−1

. Next, connect the filter output to 

both of the viewing components simultaneously. Double-click on the QT GUI Time Sink 

and set the number of inputs to 2. Do the same for the QT GUI Constellation Sink. Connect 

the outputs accordingly and then execute the flowgraph. 

Initially, if you observe the constellation, it should appear correct. As you increase the 

noise level, you will notice that the constellation remains largely unaffected because the 

ISI is set to 0. In this case, the equalizer is essentially behaving as a regular all-pass filter 

with no delay. 
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However, as you introduce ISI, you will observe that while the unequalized constellation 

starts to spread, the equalized constellation should return to its correct position. Yet, one 

issue remains: the equalized values are highly susceptible to noise.  



Let’s adjust the setup for a better observation. Increase the number of samples to 10,000 

and adjust the number of points in both the constellation and time sinks to match. As you 

raise the noise level, you will see the effect on the constellation. With higher ISI, the 

constellation spread becomes evident. Increasing both ISI and noise significantly 

exacerbates the spread. 
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In the absence of ISI (i.e., ISI = 0.5), reducing ISI to 0 results in minimal noise 

enhancement, and the constellation remains quite stable. However, as ISI increases, the 

noise enhancement also increases, causing the red constellation to spread.  

This issue arises because the zero-forcing equalizer amplifies the noise in its effort to cancel 

out the inter-symbol interference. To effectively neutralize ISI, the equalizer needs to 

extract the required component from the vector space, which, as we observed, results in 

increased noise enhancement. 

Indeed, you'll observe that if we keep the noise level very low, say at 0.1, and then start 

increasing the inter-symbol interference (ISI), you’ll notice that as ISI approaches around 



1, the data essentially becomes corrupted and spreads out significantly. This happens 

because when ISI equals 1, the filter essentially becomes 1
1+𝑍𝑍−1

, which has a pole at 𝑍𝑍 =

𝑒𝑒𝑗𝑗π. This configuration will drastically amplify the noise, particularly around π, leading to 

significant noise enhancement. 
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Let’s fine-tune the resolution of the ISI range to 0.01. By running the simulation with a 

small amount of noise and setting the ISI close to 0.95, you can clearly see the dramatic 

noise enhancement. This enhancement occurs because noise at higher frequencies gets 

significantly amplified. Conversely, if you explore negative ISI values, you will see that 

noise at lower frequencies is similarly enhanced. Thus, regardless of the sign of ISI, you 

will experience some degree of noise enhancement. 

The issue with the zero-forcing equalizer in low Signal-to-Noise Ratio (SNR) scenarios 

becomes apparent from this observation. The signal spreads out, and the blue blobs on the 

constellation diagram represent the received signal.  
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While the signal appears relatively clean, using advanced equalization methods like the 

Viterbi algorithm-based maximum likelihood sequence estimation can provide much better 

results, especially when noise levels are low. The trade-off is the increased computational 

complexity. Blindly using a zero-forcing equalizer in such scenarios can lead to severe 

noise enhancement, which is evident from our current visualization. 

Now, let’s evaluate the running example we discussed in class using GNU Radio to see 

how it performs. Recall that our transmit pulse was a rectangular pulse with an amplitude 

of 1 from 0 to 2 seconds. We modeled the effective channel with two impulses: one with 

an amplitude of 1 at one sample and another with an amplitude of -0.5 at the second sample.  

When you convolve GTX and GC, the resulting P(T) appears as follows: between the first 

and second samples, it is 1; between the second and third samples, it is 0.5; and between 

the third and fourth samples, it is -0.5. Given that the symbol rate is two samples per 

symbol, the length of P(T) exceeds one symbol’s length, which inevitably introduces inter-

symbol interference. 
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Let's now model this scenario using GNU Radio. We’ll start by adding a random source. 

To do this, press Control + F (or Command + F) and search for "random" to add the random 

source block. Since we are using a QPSK constellation, double-click on the random source 

block and set its maximum value to 4, and choose the data type as byte. 

Next, we need to add a constellation object and an encoder that utilizes this object. To do 

this, press Control + F (or Command + F) and search for "CONST" to find the constellation 

object. Select the default QPSK constellation, rename it to "myconst," and connect it to the 

constellation encoder. Double-click on the constellation encoder block and set its 

constellation object to "myconst." 

Before proceeding, let’s add a throttle block to ensure that the simulation doesn’t overload 

our computer. Press Control + F (or Command + F), type "throttle," and add the throttle 

block to your flow graph. 

Now, let’s incorporate the channel effects. We’ll account for the impact of P(T), which has 

a response of 0, 1, 0.5, -0.5, with symbols sent at a rate of two samples per symbol. Press 

Control + F (or Command + F), and search for "interpolating FIR filter" to add this block. 

Set the interpolation factor to 2 to match the samples per symbol, and configure the taps to 

0, 1, 0.5, -0.5. 

To verify that we’re achieving the desired shape, let’s add a time sink. Press Control + F 

(or Command + F), type "time," and add the time sink block. Temporarily set the 

interpolation to 20 to better visualize the response. Run the simulation and use a stem plot 

to observe the output. Focus on the blue trace; you should see a pattern that closely 

resembles 1, 0.5, -0.5. Note that the actual value is slightly adjusted to 0.7 because the 

constellation points are in the form 1
√2

+ 𝑗𝑗 1
√2

. The amplitude of half and negative half, with 

a total of 20 samples in between, confirms the response is correct. Reset the interpolation 

to 2 and remove the time sink once verification is complete. 

To finalize the transmission-to-reception phase, we need to add noise. We’ll use a QTGUI 

range to control the noise level. Press Control + F (or Command + F), search for "range," 

and add the QTGUI range block. Set the default value to 0, the maximum to 3, and the step 



to 0.01.  

Next, add a noise source block by pressing Control + F (or Command + F) and searching 

for "noise." Double-click the noise block and set the noise standard deviation (noise std) to 

be controlled by the QTGUI range. Name this range block "noise std." 

Finally, add an "add" block by pressing Control + F (or Command + F) and searching for 

"add." Connect this block to our signal path. To visualize the output, add a virtual sink by 

pressing Control + F (or Command + F), searching for "virtual sink," and connecting it to 

the output. Name the stream "RxSig." 

With these steps, we have set up the complete signal processing flow in GNU Radio. 

Now we need to apply zero-forcing equalization to the signal `RxSig`. Let’s recall the 

optimal zero-forcing equalizer for sampling at twice the symbol rate. According to our 

lecture, the effective channel P(T), when sampled at twice the symbol rate, can be 

represented as two channels. One channel has the form 1 − 1
2
𝑍𝑍−1, corresponding to the 

part of P(T) where the response is 1 followed by −1
2
 two samples later. The second channel 

has the form 1
2
. Therefore, we have 𝐻𝐻1(𝑍𝑍) = 1 − 1

2
𝑍𝑍−1 and 𝐻𝐻2(𝑍𝑍) = 1

2
. 

To design the equalizer, we need it to satisfy ∑𝐻𝐻𝑖𝑖(𝑍𝑍)𝐺𝐺𝑖𝑖(𝑍𝑍) = 𝑍𝑍−𝐷𝐷. This means we want 

to combine them to get either one or just a causal delay, a perfect delay. 

From our matrix operations, we determined that the zero-forcing equalizer coefficients are 
5
8

, 5
8

, 5
8

,−1
8

, 2
8
. When you reverse and carefully select the coefficients, you get −1

8
 and 5

8
 for 

𝐺𝐺1(𝑍𝑍), and 2
8

+ 5
8
𝑍𝑍−1 + 5

8
𝑍𝑍−2 for G2(Z). You can verify that 𝐻𝐻1(𝑍𝑍)𝐺𝐺1(𝑍𝑍) + 𝐻𝐻2(𝑍𝑍)𝐺𝐺2(𝑍𝑍) 

yields 𝑍𝑍−1, confirming our equalizer design. 

We’ll now implement G1 and G2 in GNU Radio to verify their effectiveness in equalizing 

the signal. First, add a virtual source to provide the signal we want to equalize. Double-

click the virtual source and name it `RxSig`. 

Since we are sampling at twice the symbol rate, we need to split `RxSig` into two parts. 



We’ll add two decimating filters to take alternate samples. Press Control + F (or Command 

+ F), search for "decimating FIR filter," and add it to the flow graph. Set the decimation 

factor to 2. For the first filter, configure it to take the first set of samples. Copy and paste 

this filter, and configure the second filter to take the second set of samples, effectively 

processing the alternate samples. 

Now connect these filters. You will have the first set of samples corresponding to 0 and 1
2
 

and the second set corresponding to 1 and −1
2
. 

Next, add the filters corresponding to H1(Z) and H2(Z). For H1(Z), use a filter with 

coefficients −1
8
 and 5

8
. For H2(Z), use coefficients 2

8
, 5
8

, 5
8
. Add an interpolating FIR filter 

for this purpose. Press Control + F (or Command + F), search for "interpolating FIR filter," 

and configure the interpolation to 1 with the specified coefficients. Duplicate and configure 

another interpolating FIR filter with the coefficients for H2(Z). 
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Finally, use an add block to combine the outputs of these filters. Press Control + F (or 



Command + F), search for "add," and add the block to your flow graph. Connect the filters 

to the add block to obtain the desired response. 

To confirm the effectiveness of the equalization, add a constellation sink. Press Control + 

F (or Command + F), search for "QTGUI constellation sink," and add it to the flow graph. 

Run the simulation to observe the constellation and verify that it is well-formed, indicating 

successful equalization. 

Even with added noise, the constellation remains equalized effectively. To verify this, let's 

take an additional step. We'll add three inputs to our constellation sink. Set the number of 

inputs to 3 and label them as follows: the first input as blue, the second as red, and the third 

as magenta. Now, we'll connect the outputs of our two filters to these inputs. I’ll make this 

setup visible for you. 

Observe the constellation as we add some noise. You'll notice that the red trace looks quite 

good, while the magenta trace appears less clear. Why is this? The red trace represents the 

output of H2(Z), which is essentially 1
2
. Recall that P(T) had components 1

2
 and −1

2
. With 

proper sampling, one part of the signal will not experience any inter-symbol interference 

(ISI), as the first and last parts are where ISI will be encountered. Thus, you see this trace 

with an amplitude of 1
2

× 1
√2

. 

However, for proper systematic zero-forcing equalization, you need to achieve this exact 

result: it eliminates the ISI and restores the signal to its correct amplitude. This is the 

essence of zero-forcing equalization. 

Keep in mind that adding more noise can degrade performance. As seen previously with 

ISI, zero-forcing equalization is not very robust to noise. This technique can amplify noise, 

particularly in low SNR scenarios, leading to significant performance degradation. 

In this lecture, we demonstrated a practical approach to implementing zero-forcing 

equalization using GNU Radio. While it effectively cancels interference under limited 

noise conditions, its performance declines in lower SNR environments due to increased 

noise amplification. 



In the next lecture, we'll explore an alternative suboptimal equalization method that 

performs somewhat better than zero-forcing equalization under certain conditions and 

assess its effectiveness in GNU Radio. Thank you. 


