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Hello, and welcome to this lecture on digital communication using GNU Radio. I’m Prof. 

Kumar Appaiah from the Department of Electrical Engineering at IIT Bombay. In today's 

session, we will delve into the concept of suboptimal channel equalization. In the past few 

lectures, we discussed the optimal detection strategy, Maximum Likelihood Sequence 

Estimation (MLSE).  
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We also touched on the incremental approach, wherein we considered whether it was 

possible to make decisions progressively, based on the symbols observed so far, rather than 



evaluating all possible combinations. This led us to the Viterbi algorithm, which helps in 

making decisions under certain conditions, while keeping track of surviving paths. The 

Viterbi algorithm is a powerful tool, and it generally works quite well. 

However, there are instances where even the Viterbi algorithm can become too complex to 

implement practically. The algorithm necessitates the retention of multiple survivor paths 

in memory, which can lead to complications. In such cases, particularly when you have a 

high Signal-to-Noise Ratio (SNR), you might not want to deal with such complex 

algorithms. This raises an important question: Are there simpler, more efficient, and less 

computationally expensive suboptimal algorithms that still deliver satisfactory 

performance? The answer is yes, and that is where our discussion on linear equalization 

begins. 
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Linear equalization can be thought of as a matrix-based or filtering-based approach, where 

we attempt to construct something akin to an inverse filter for the channel. Some popular 

techniques within this framework include the zero-forcing equalizer and the minimum 



mean square error (MMSE) equalizer. These methods offer lower complexity and are 

useful in scenarios where fully optimal solutions may be overkill. Today, we will focus on 

the zero-forcing equalizer. 

Let’s revisit the channel model we've been using. The received signal, y(t), can be 

expressed as a sum of delayed pulses, bk p(t - kT), with additive white Gaussian noise 

(AWGN). Here, T represents the symbol duration, the time per symbol. Now, suppose that 

at the receiver, we sample the signal at a different rate, say every Ts seconds, potentially 

with an offset δ. The received samples can then be expressed as the convolution of the 

received signal y with the receive filter grx(t), evaluated at kTs + δ, where δ is a timing 

offset between zero and Ts. Thus, we obtain samples at intervals of Ts. 
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Note that Ts could be equal to T, or it could be less than T, but typically it is not greater 

than T, since oversampling beyond T would cause loss of information. Now, the received 

sample rk can be expressed as rk = fk + wk, where fk is the signal component, specifically, 



p convolved with grx, evaluated at kTs + δ, and wk is the noise component, given by the 

convolution of the noise with grx, also evaluated at kTs + δ. 

A key aspect to remember is that after the convolution with the receive filter, the noise may 

no longer be independent and identically distributed (i.i.d.). In fact, the noise could become 

correlated, which requires careful consideration. To understand the noise statistics, we 

examine the term n convolved with grx(t). The expected value of this noise component is 

zero (since the mean of AWGN is zero), and the autocorrelation function can be defined as 

2𝜎𝜎2 ∫𝑔𝑔𝑟𝑟𝑟𝑟(𝑡𝑡)𝑔𝑔𝑟𝑟𝑟𝑟∗ (𝑡𝑡 − τ)𝑑𝑑𝑑𝑑. This expression for the autocorrelation involves the factor 2σ2 

because we are dealing with the power spectral density N0, where N0/2 = σ2, the noise 

variance per dimension. For complex-valued signals, this becomes 2𝜎𝜎2𝑔𝑔𝑟𝑟𝑟𝑟 ∗ 𝑔𝑔𝑚𝑚𝑚𝑚(𝑡𝑡) , 

where gmf is the matched filter, which is defined as 𝑔𝑔𝑟𝑟𝑟𝑟∗ (−𝑡𝑡). 

Therefore, the noise component wk, which is n convolved with grx and evaluated at kTs + 

δ, has an autocovariance given by 2𝜎𝜎2 ∫𝑔𝑔𝑟𝑟𝑟𝑟(𝑡𝑡)𝑔𝑔𝑟𝑟𝑟𝑟∗ (𝑡𝑡 − 𝑘𝑘𝑇𝑇𝑠𝑠)𝑑𝑑𝑑𝑑. It's important to note that 

this autocovariance depends on the sample spacing Ts, not on the symbol spacing T. If you 

wish to revisit how we derived these expressions, they directly follow from our earlier 

discussions on signal space concepts.  

By using the signal space framework, we can further analyze and understand the impact of 

noise and interference, leading to more effective suboptimal equalization strategies like the 

zero-forcing receiver. 

Essentially, you are filtering the noise and leveraging that filtering to calculate the discrete 

covariance appropriately. That's the key idea here, filtering the noise and working out the 

statistics. A crucial point we're emphasizing is that it's the sample spacing, not the symbol 

spacing, that matters in this context. Now, let's walk through an illustrative example to 

make this clearer.  

In this example, our symbol duration, T, is set to 2 seconds because the transmit pulse, 

gtx(t), is defined over the interval from 0 to 2 seconds. Essentially, we're sending one 

symbol every 2 seconds. However, at the receiver, we choose the sampling interval, Ts, to 



be 1 second, so we're effectively sampling at twice the rate. Now, for simplicity, let’s 

assume we're sending only one symbol, b0 = 1, and nothing else. 
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When you send b0 = 1, the received signal will be a shifted version of the pulse. If you 

sample the received signal using an appropriate matched filter, say, a rectangular pulse 

over Ts = 1, you will get specific sample values. For example, after filtering, your first 

sample will be 1, the second will be 0.5, the third will be -0.5, and the fourth will be 0. 

These values represent the sample response to b0, which is essentially shifted by one time 

instant, then followed by the output of the pulse p(t). 

If you sample this received signal using the appropriately chosen matched filter, you would 

obtain the samples 1, 0.5, and -0.5. One important detail to highlight is that if you choose 

your matched filter pulse as a rectangular window over the interval -Ts/2 to Ts/2, and then 

sample the signal, the noise will be scaled by 2σ2 δ(k). Because of this careful choice of 

sampling interval, the noise remains independent and identically distributed (i.i.d.), even 

though I previously warned that it might not be i.i.d. This holds true because we are 



sampling at intervals of Ts. Essentially, what’s happening is that with T = 2 seconds, the 

channel is mixing across symbols. For instance, the effect of the transmitted symbol is felt 

after one second, but by sampling at exactly one-second intervals, you avoid the impact of 

noise correlation. This pulse structure is particularly effective. 
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Now, let's consider a block of five consecutive samples to better understand how the system 

behaves. When you adopt this sampling strategy, the received signal, Rk, will be a 

combination of the contributions from neighboring symbols. For example, Rk will be 

influenced by bk-1, with a response of [0.5, -0.5, 0, 0, 0], and by bk, with a response of [0, 

1, 0.5, -0.5, 0]. So how do we get this? Let’s step through it carefully. 

First, recall that our channel response looks like this: 1, 0.5, -0.5. These values occur at 

sample times 𝑡𝑡 =  1, 2, 3, …, corresponding to the symbol duration. For instance, if we 

sample using a rectangular window with Ts = 1, the channel response would be [0, 1, 0.5, 

-0.5]. 



Now, let’s apply the principle of superposition. Suppose only bk-1 is active; then, the 

response we get is [0.5, -0.5, 0, 0, 0]. If only bk is active, we would see [0, 1, 0.5, -0.5, 0]. 

Similarly, if only bk+1 is present, the response would be shifted by two time units, resulting 

in [0, 0, 0, 1, 0.5, -0.5]. 
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Next, let's analyze five consecutive symbols. When you consider these five symbols and 

express the output in matrix form, the received signal Rk will be represented as a 

combination of the contributions from each symbol. The contribution from bk-1 will be [0.5, 

-0.5, 0, 0, 0], from bk will be [0, 1, 0.5, -0.5, 0], and from bk+1 will be [0, 0, 0, 1, 0.5, -0.5]. 

So, in total, the received signal Rk is a superposition of these three responses. 

You might wonder why we are choosing these specific five symbols and not others. You 

are correct, there is no special reason for focusing on these five symbols in particular. We 

could have selected different symbols, and in fact, we will relax this assumption later. For 

now, we are simply using these five symbols to illustrate the process. 



Let's revisit the process for a clearer understanding. If you want to verify the working step 

by step, we are essentially dealing with specific terms like 1
2
, −1

2
, 0, 0, 0 and similar values. 

So, starting from this, the operations involve multiplying bk-1, bk, and bk+1 by specific 

matrices. For example, we have 𝑏𝑏𝑘𝑘−1 × �1
2

,−1
2

, 0,0,0�, 𝑏𝑏𝑘𝑘 × �0,1, 1
2

,−1
2

, 0�, and 𝑏𝑏𝑘𝑘+1 ×

�0,0,0,1, 1
2
�, plus Gaussian noise contributions. 
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You can then express this system as 𝑈𝑈 ⋅ 𝑏𝑏𝑘𝑘 + 𝑊𝑊𝑘𝑘, where U is a matrix formed by combining 

these columns, and Wk represents the Gaussian noise samples. Importantly, 

𝑊𝑊𝑘𝑘 ,𝑊𝑊𝑘𝑘+1,𝑊𝑊𝑘𝑘+2, …,  are independent and identically distributed (i.i.d.), owing to the 

properties of Gaussian noise. Now, we define a vector 𝑏𝑏𝑘𝑘 = [𝑏𝑏𝑘𝑘−1, 𝑏𝑏𝑘𝑘, 𝑏𝑏𝑘𝑘+1], which allows 

us to write the system as 𝑅𝑅𝑘𝑘. 

Thus, 𝑅𝑅𝑘𝑘 = [𝑅𝑅𝑘𝑘−1,𝑅𝑅𝑘𝑘,𝑅𝑅𝑘𝑘+1,𝑅𝑅𝑘𝑘+2,𝑅𝑅𝑘𝑘+3],  and by using matrix multiplication, we can 

express it in terms of the transmitted symbols as: 

𝑅𝑅𝑘𝑘 = 𝑢𝑢 × [𝑏𝑏𝑘𝑘−1, 𝑏𝑏𝑘𝑘, 𝑏𝑏𝑘𝑘+1] + 𝑊𝑊𝑘𝑘. 



Where, 

 

This expression describes how the transmitted symbols and noise are combined. Now, we 

define the zero-forcing equalizer. The goal here is to isolate bk, eliminating the effects of 

intersymbol interference (ISI). We achieve this by finding a vector c such that 𝑐𝑐 ⋅ 𝑈𝑈1 = 0, 

𝑐𝑐 ⋅ 𝑈𝑈−1 = 0, and 𝑐𝑐 ⋅ 𝑈𝑈0 = 1. This ensures that all interference from neighboring symbols 

is canceled out. 
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To implement this, the zero-forcing equalizer c satisfies the conditions: 



𝑐𝑐†𝑈𝑈0 = 1 and 𝑐𝑐†𝑈𝑈𝑖𝑖 = 0 for all 𝑖𝑖 ≠ 0. 

This is the essence of the zero-forcing equalizer, which forces the contribution of all 

symbols except bk to zero. The mathematical expression for this zero-forcing equalizer is: 

𝑐𝑐ZF = 𝑈𝑈†(𝑈𝑈𝑈𝑈†)−1𝑒𝑒, 

where 𝑒𝑒 is a vector like [0, 1, 0]. This formulation aligns with the idea of projecting a vector 

onto a particular subspace while ensuring that interference from other subspaces is 

nullified.  
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Why exactly is this form used? Intuitively, when you multiply U by its conjugate transpose, 

U†, the result is the identity matrix. The vector 𝑒𝑒 effectively selects the part of the matrix 

corresponding to U0, ensuring that its contribution is scaled to 1 while eliminating others. 

To verify this, consider the product: 

𝑐𝑐ZF
† 𝑈𝑈 = 𝑈𝑈†(𝑈𝑈𝑈𝑈†)−1𝑒𝑒†𝑈𝑈. 



The key here is that the inverse matrix effectively removes the contributions from the other 

symbols, leaving us with: 

𝑐𝑐ZF
† 𝑈𝑈0 = 1, 

which confirms that only the desired symbol, bk, remains. 

One caveat, however, is that zero-forcing equalizers are not always feasible. For instance, 

there are certain linear independence conditions on the columns of U that must be satisfied 

for the zero-forcing approach to work. Whenever these conditions are met, the equalizer 

can successfully retrieve bk while eliminating bk-1 and bk+1.  
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However, there's a geometric aspect to consider. Think of the columns 𝑈𝑈−1  and U1 as 

vectors in a vector space. The zero-forcing equalizer is essentially projecting onto a space 

orthogonal to these vectors, ensuring that their contribution is nullified. Once this 

projection is completed, we scale U0 to ensure it has a magnitude of 1. This scaling is 

critical because it can amplify the noise, which is a potential drawback. 



For example, if the columns 𝑈𝑈−1 and U1 are nearly orthogonal, the projection process is 

straightforward. But if the vector spaces are mixed up, the projection can lead to significant 

noise enhancement, a problem we'll observe in our experiments with GNU Radio. 

The noise variance per dimension when using the zero-forcing equalizer is given by: 

𝜎𝜎ZF
2 = 𝜎𝜎2 ⋅ |𝑐𝑐ZF|2, 

where 𝑐𝑐ZF multiplies the noise. This results in: 

𝜎𝜎ZF
2 =

𝜎𝜎2

|𝑃𝑃⊥𝑈𝑈0|2
, 

where 𝑃𝑃⊥ denotes the projection matrix perpendicular to the interference space. In contrast, 

if there were no ISI, the noise variance would simply be: 

𝜎𝜎2/|𝑈𝑈0|2. 
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Thus, the noise enhancement factor caused by zero-forcing is: 



Enhancement Factor =
|𝑈𝑈0|2

|𝑃𝑃⊥𝑈𝑈0|2
. 

This projection matrix, 𝑃𝑃⊥, can introduce significant noise amplification if the vectors are 

not well-separated, causing performance degradation. In our running example, you can 

check that the zero-forcing coefficients (CZF) are: 

CZF = �
5
8

,
5
8

,
5
8

,−
1
8

,
1
4
�
𝑇𝑇

. 

This outlines how the zero-forcing equalizer works and highlights the challenges related to 

noise enhancement. 

Now, you can observe that these values are all less than one, but they aren't particularly 

small. As we discussed earlier, the noise is modeled as complex normal with a variance of 

2.5σ2. However, for BPSK, only the real part of the noise matters since we adopted a 

complex model. In this case, the real noise variance becomes 1.25σ2.  

Regarding the energy per bit, Eb is 1.5. Why? Because the pulse itself has amplitudes of 1
2
 

and −1
2
. If you sum up the energies, you get: 

1 + �
1
4�

+ �
1
4�

=
3
2

. 

The symbol error rate, assuming no intersymbol interference, follows the well-known 

expression 𝑄𝑄 ��2𝐸𝐸𝑏𝑏
𝑁𝑁0
� for BPSK. However, in this context, the factor A comes into play, 

and when you compute it, A turns out to be 16
15

, which is very close to one.  

As a result, the performance loss, in terms of signal-to-noise ratio (SNR), is approximately 

10 log10 �
15
8
�. This comes out to roughly 2.73 dB. Now, 2.73 dB may not sound significant 

at first glance, but it's actually quite a lot, nearly 3 dB, which represents a doubling of 

power. This loss is what you're experiencing due to noise enhancement caused by using 

the zero-forcing equalizer. 



These types of situations arise especially when you have either a low SNR or a significant 

amount of intersymbol interference. This is important to keep in mind as you work through 

equalization strategies. 
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One issue I previously mentioned was that we used a block-based approach with a block 

length of five. Now, the question arises: Can we extend this to larger block lengths? Of 

course, with larger blocks, you'd be dealing with bigger matrices, but can we take a more 

continuous filtering-based approach? After all, our channel behaves like a filter. So, could 

we just use filtering instead? 

In this particular example, you can verify that we have T = 2 and Ts = 1. This allows us to 

represent the channel as: 

𝐻𝐻1(𝑧𝑧) = 1 −
1
2
𝑧𝑧−1,  𝐻𝐻2(𝑧𝑧) =

1
2

. 



Why these forms? If you recall, our pulse p(t) was 1
2
, -1
2
. Since we’re sampling at twice the 

rate, the effective split between these two filters follows that pattern. The first filter captures 

the alternating 1 and -1
2
 values, while the second filter picks up the residual 1

2
. 

To achieve proper equalization, we need to satisfy the condition, 

𝐻𝐻1(𝑧𝑧) × 𝐺𝐺1(𝑧𝑧) + 𝐻𝐻2(𝑧𝑧) × 𝐺𝐺2(𝑧𝑧) = 𝑧𝑧−1. 

This means that the overall effect of the filtering should ideally be just a delay, delays are 

acceptable to a certain extent, but you don't want any additional filtering effects. 
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If you can find Gi(z) that satisfy this condition, you can very easily construct a filter-based 

equalizer. Now, let’s see if that’s possible. Our zero-forcing equalizer (ZF) has a specific 

structure. If you reverse the elements, you’ll find terms like: 

2
8

+
5
8
𝑧𝑧−1 +

5
8
𝑧𝑧−2, 



which corresponds to one filter, and: 

−
1
8

+
5
8
𝑧𝑧−1, 

which corresponds to another filter. 

You can confirm that 𝐻𝐻1(𝑧𝑧) × 𝐺𝐺1(𝑧𝑧) + 𝐻𝐻2(𝑧𝑧) × 𝐺𝐺2(𝑧𝑧) = 𝑧𝑧−1 holds true. For fractional-

phase space equalizers, there’s a sufficient condition: the filters Hi(z) should not share 

common zeros. If they don’t have common zeros, you can always find G1(z) and G2(z) that 

give you proper equalization. This approach isn’t necessarily better or worse than the 

block-based method, it’s just a continuous implementation of the same concept. 

However, for symbol-space equalizers, where the sample rate equals the symbol rate, your 

only equalizer option is 1/H(z). That can be problematic. So, while the zero-forcing 

equalizer is a possible solution, keep in mind that it tends to work well only under 

conditions of high SNR or when the vector spaces are clearly separable. 

Another significant issue is noise enhancement. The Gaussian noise gets amplified 

significantly by the zero-forcing approach. In the next class, we will introduce the 

minimum mean square error (MMSE) equalizer, which takes noise into account and 

mitigates these problems. The MMSE equalizer provides a more balanced performance, 

even in high noise scenarios. Thank you for your attention, and we will continue with this 

discussion in the next session. 


