
Digital Communication using GNU Radio 

Prof. Kumar Appaiah 

Department of Electrical Engineering 

Indian Institute of Technology Bombay 

Week-09 

Lecture-43 

Maximum Likelihood Sequence Estimation: Viterbi Algorithm 

Hello, and welcome to this lecture on digital communication using GNU Radio. My name 

is Kumar Appiah, and I am from the Department of Electrical Engineering at IIT Bombay. 

In this lecture, we will conclude our discussion of the Viterbi algorithm by working through 

an example.  

(Refer Slide Time: 00:56) 

 

If you recall from the previous lecture, we discussed the concept of an incremental metric, 

and we claimed that this incremental metric can be used to make decisions in real-time 

when performing Maximum Likelihood Sequence Estimation (MLSE). The form of the 



incremental metric was derived from our earlier notation, where Zk was essentially the 

result of taking the inner product of Y with Sb at the k-th time instant. Furthermore, the 

term H represents the autocorrelation of p(t), evaluated at the k-th instant. Now, let us 

revisit the example we were working on. 

In our example, we derived an effective p(t) that had a specific form. Let me remind you 

of its structure: it had values of 1, 2, 3, and 4, with corresponding values of −1
2
, 1
2
, and 1. 

For this function p(t), we will now apply the Viterbi algorithm to a particular example. But 

before we proceed, we need to compute the corresponding H values: H0, H1, H2, and so on. 

Let us first compute H0. In this case, since everything is real, and we will assume Binary 

Phase Shift Keying (BPSK) modulation, we can compute H0 using the integral of p(t) 

multiplied by p*(t), i.e., p(t)2. This is straightforward. If you look at the values: 1, 1
2
, and 

−1
2
, you get 1 + 1

4
+ 1

4
= 3

2
. Hence, 𝐻𝐻0 = 3

2
. 

(Refer Slide Time: 03:19) 

 

Now, for H1, we must be more careful. To compute H1, we use the integral of p(t) and p(t 



- T), where T is the signaling interval. In our case, the signaling rate is T = 2, meaning we 

have half a symbol per second. To perform this integral, we shift p(t) by T = 2. Thus, the 

values will now be shifted accordingly: 1 is shifted to the position of −1
2

, 1
2
 is shifted, and 

so on. 

Once we perform this overlap integral, it becomes clear that the 1 from p(t) multiplies with 

the −1
2
 from the shifted version, giving −1

2
. This is the value of H1, and it also happens to 

be equal to 𝐻𝐻−1, since 𝐻𝐻−1 is the conjugate of H1. Interestingly, in this real-valued case, 

there isn't much else to calculate for the higher H-terms beyond this point. 

Now, moving forward, let us consider the incremental metric λk, which relates to the 

transition from Sk to Sk+1. We are going to use this incremental metric in our Viterbi 

algorithm. To make it easier to work with, let’s organize our calculations and make a copy 

of this formula for further use.  

(Refer Slide Time: 08:48) 

 

In this section, we will perform an example calculation using the Viterbi algorithm, 



specifically with Binary Phase-Shift Keying (BPSK) modulation. 

First, let's define our setup. We will assume that b0 is always +1. The sequence of received 

signals y is as follows: y0 = -1, y1 = 2, y2 = -2, and y3 = 1.5. These are the received values. 

Now, y0 doesn’t really affect the outcome since we already know that b0 = +1. Therefore, 

we'll use y1, y2, and y3 to determine what sequence was transmitted. 

To proceed, we draw a trellis diagram representing the states at each time step. The trellis 

helps us visualize the possible values the sequence bk can take. For b0, the only possible 

value is +1. Moving to b1, the possible values are +1 or -1. Continuing this, at each 

subsequent step, the sequence can take two possible values, either +1 or -1. This is 

essentially the interpretation of the incremental metric, which calculates the transition from 

one state Sk to the next state Sk+1, using the values of bk and bk+1. 

(Refer Slide Time: 11:11) 

 

Next, we need to compute the metrics associated with each branch of the trellis. These 

metrics help us evaluate the likelihood of different state transitions. We'll use the 

expression for the incremental metric that we derived earlier. However, before we do that, 



let’s simplify the expression based on some observations. 

First, in BPSK, |bk|2 is always 1, regardless of the symbol. This observation holds for most 

QAM constellations as well. Moreover, h0 is a fixed number, so we can disregard this term. 

Also, in our case, the value of L (the memory length) is 1 because our autocorrelation 

sequence depends only on L = 1. The autocorrelation sequence was {−1
2

, 1,−1
2
}, which 

also simplifies the computation. 

Thus, the incremental metric simplifies significantly. It reduces to: 

𝜆𝜆𝑘𝑘 = 𝑏𝑏𝑘𝑘𝑦𝑦𝑘𝑘 +
1
2
𝑏𝑏𝑘𝑘𝑏𝑏𝑘𝑘−1 

This expression is simplified further as we continue. Now, let’s plug in the values of yk. 

We received the sequence y0 = -1, y1 = 2, y2 = -2, and y3 = 1.5. 

We can now calculate the metric λk for each branch. Let’s start with the case where b1 = 

+1. The metric in this case becomes: 

𝜆𝜆𝑘𝑘 = 𝑏𝑏1 ⋅ 𝑦𝑦1 +
1
2
⋅ 𝑏𝑏1 ⋅ 𝑏𝑏0 

Substituting the values, we have b1 = +1 and y1 = 2, so: 

𝜆𝜆𝑘𝑘 = 1 ⋅ 2 +
1
2
⋅ 1 ⋅ 1 = 2 +

1
2

= 2.5 

Next, let’s calculate the metric for the case where b1 = -1. In this case: 

𝜆𝜆𝑘𝑘 = −1 ⋅ 𝑦𝑦1 +
1
2
⋅ (−1) ⋅ 𝑏𝑏0 

Substituting the values, we get: 

𝜆𝜆𝑘𝑘 = −1 ⋅ 2 +
1
2
⋅ (−1) ⋅ 1 = −2 −

1
2

= −2.5 

We’ll continue this process for the subsequent branches in the trellis diagram. Let’s 



calculate the metrics for the next transition, from b1 to b2, and so on. After calculating the 

branch metrics, we can write them on the corresponding paths in the trellis diagram. 

For instance, the branch metric for transitioning from b1 = +1 to b2 = +1 is 2.5. Similarly, 

the branch metric for transitioning from b1 = -1 to b2 = -1 is -2.5. These metrics allow us 

to determine which path has the higher likelihood, meaning that we’ll choose the path with 

the larger metric at each step. 

However, note that you cannot make a final decision based solely on these incremental 

metrics at this point. Since the Viterbi algorithm relies on sequence-wise detection, you 

must evaluate the metrics at each step before making the final decision. This requires 

progressing through the entire trellis diagram, evaluating all possible sequences, and then 

selecting the path with the maximum overall likelihood. 

Let’s now proceed to the next stage in our calculation to further refine our decisions and 

complete the sequence estimation. 

(Refer Slide Time: 19:23) 

 



Let's analyze the different transitions for the case where b1 can be either +1 or -1, and 

evaluate the corresponding metrics. 

Recall from our discussion that each symbol depends only on the previous symbol. This 

relationship is straightforward in our case, as each transition depends only on the 

immediately preceding symbol. Specifically, b1 depends on b0, and b2 depends on b1. Now, 

let's compute the metrics λk for the various possible transitions. 

Assume Sk is S2. We need to compute the metrics for different combinations of b1 and b2. 

Given that y2 = -2, we will evaluate the following cases: 

1. Case 1: b1 = +1, b2 = +1 

Metric calculation: 

𝜆𝜆𝑘𝑘 = 𝑏𝑏2𝑦𝑦2 +
1
2
𝑏𝑏2𝑏𝑏1 

Substituting b2 = +1, y2 = -2, and b1 = +1: 

𝜆𝜆𝑘𝑘 = 1 ⋅ (−2) +
1
2
⋅ 1 ⋅ 1 = −2 +

1
2

= −1.5 

2. Case 2: b1 = +1, b2 = -1 

Metric calculation: 

𝜆𝜆𝑘𝑘 = 𝑏𝑏2𝑦𝑦2 +
1
2
𝑏𝑏2𝑏𝑏1 

Substituting b2 = -1, y2 = -2, and b1 = +1: 

𝜆𝜆𝑘𝑘 = (−1) ⋅ (−2) +
1
2
⋅ (−1) ⋅ 1 = 2 −

1
2

= 1.5 

3. Case 3: b1 = -1, b2 = +1 

Metric calculation: 



𝜆𝜆𝑘𝑘 = 𝑏𝑏2𝑦𝑦2 +
1
2
𝑏𝑏2𝑏𝑏1 

Substituting b2 = +1, y2 = -2, and b1 = -1: 

𝜆𝜆𝑘𝑘 = 1 ⋅ (−2) +
1
2
⋅ 1 ⋅ (−1) = −2 −

1
2

= −2.5 

4. Case 4: b1 = -1, b2 = -1 

Metric calculation: 

𝜆𝜆𝑘𝑘 = 𝑏𝑏2𝑦𝑦2 +
1
2
𝑏𝑏2𝑏𝑏1 

Substituting b2 = -1, y2 = -2, and b1 = -1: 

𝜆𝜆𝑘𝑘 = (−1) ⋅ (−2) +
1
2
⋅ (−1) ⋅ (−1) = 2 +

1
2

= 2.5 

These four metrics are then entered into the trellis diagram. Here’s how they map to the 

transitions: 

• For the transition from b1 = +1 to b2 = +1, the metric is -1.5. 

• For the transition from b1 = +1 to b2 = -1, the metric is 1.5. 

• For the transition from b1 = -1 to b2 = +1, the metric is -2.5. 

• For the transition from b1 = -1 to b2 = -1, the metric is 2.5. 

Thus, we will record these metrics in the trellis diagram, providing a clearer view of the 

likely paths based on the received sequence. 

Similarly, the transition from +1 to -1 corresponds to a metric of 1.5, and the transition 

from -1 to +1 corresponds to a metric of -2.5. Finally, the transition from -1 to -1 

corresponds to a metric of 2.5.  

Let’s pause for a moment to analyze these results. As we demonstrated in the previous 

lecture, these increments are additive. This means we can combine the metrics along 



different paths to determine the overall metric for each path. 

Consider the case where we have two paths converging: 

• Path 1: +1 → +1 → +1  

The metric for this path is computed as:  

2.5 - 1.5 = 1.0 

• Path 2: +1 → -1 → +1  

The metric for this path is:  

-2.5 - (-2.5) = -5.0 

(Refer Slide Time: 22:43) 

 

Since both paths converge at the same point, you can make a decision based on the metrics 

calculated. For the path +1 → +1 → +1, which has a metric of 1.0, it is considered optimal 

compared to the path +1 → -1 → +1, which has a metric of -5.0. 



However, note that at the point where the two paths merge, there are additional paths 

merging from the -1 state as well: 

• Path 3: +1 → +1 → -1  

The metric here is:  

2.5 + 1.5 = 4.0 

• Path 4: +1 → -1 → -1  

The metric is:  

-2.5 + 2.5 = 0 

At this juncture, Path 3 with a metric of 4.0 is clearly better compared to Path 4 with a 

metric of 0. However, a final decision cannot be made just yet because future symbols b2 

and b3 will also influence the optimal path selection. 

Hence, at this point in the trellis, we have identified the two most promising paths to 

continue with. These paths are: 

1. +1 → +1 → +1 

2. +1 → -1 → -1 

These two paths will be retained for further consideration until we receive more 

information from subsequent symbols. Decisions can be refined as more metrics are 

calculated and new paths are evaluated. 

Now, let's proceed to compute the metrics for the next symbol, Y3 = 1.5, using the given 

formula: 

𝜆𝜆𝑘𝑘 = 𝑏𝑏𝑘𝑘𝑦𝑦𝑘𝑘 +
1
2
𝑏𝑏𝑘𝑘𝑏𝑏𝑘𝑘−1 

For each possible transition, we compute: 



1. Transition: +1 → +1 → +1 

𝜆𝜆𝑘𝑘 = 1.5 +
1
2

× 1 = 2.0 

2. Transition: +1 → -1 → +1 

𝜆𝜆𝑘𝑘 = −1.5 −
1
2

= −2.0 

3. Transition: -1 → +1 → +1 

𝜆𝜆𝑘𝑘 = 1.5 −
1
2

= 1.0 

4. Transition: -1 → -1 → +1 

𝜆𝜆𝑘𝑘 = −1.5 +
1
2

= −1.0 

So, the computed metrics are: 

• For +1 → +1 → +1, the metric is 2.0. 

• For +1 → -1 → +1, the metric is -2.0. 

• For -1 → +1 → +1, the metric is 1.0. 

• For -1 → -1 → +1, the metric is -1.0. 

Now we need to compare these metrics with previous calculations to decide on the optimal 

paths moving forward. 

At this point, we have two surviving paths. To analyze them, let's consider the metrics 

along each path. 

For the straight path from +1 to +1: 

• The metric is calculated as follows: 2.5 - 1.5 = 1, then adding the next metric of 2, 

we get a total of 3. 



Next, consider the alternative path that merges here: 

• For this path, the metric is 2.5 + 1.5 = 4, then adding the next metric of 1, we get a 

total of 5. 

Therefore, the path with the metric of 5 is the optimal one, and the path with the metric of 

3 is discarded.  

However, we also need to consider one more path: 

• The metric for this path is 2.5 + 1.5 - 1 = 3.  

Thus, the two surviving paths are: 

1. The path with a total metric of 5. 

2. The path with a total metric of 3. 

(Refer Slide Time: 23:54) 

 

This decision is justified because, regardless of how far you continue, the metrics at the 



points where paths merge will not change. Decisions about past symbols are based on the 

available information without needing to revisit those past metrics. Therefore, when the 

optimal paths converge, you can confidently make decisions for symbols like b2 and b1. 

Even when paths don't immediately merge, you can still make optimal decisions based on 

the current metrics and the available information. 

This method is the basis of the celebrated Viterbi algorithm, which is widely used for 

maximum likelihood sequence estimation. It is also applicable in Hidden Markov Model 

(HMM) scenarios, where continuous streams of input data are processed to compute 

probabilistic metrics and optimize decisions. The Viterbi algorithm can be implemented 

efficiently in Python, with numerous resources and libraries available for its application. 

For example, you can easily find Python implementations of the Viterbi algorithm by 

searching online. 

In this course, we won't be implementing the Viterbi algorithm directly in GNU Radio due 

to its complexity and the cumbersome nature of such an implementation. Instead, we'll 

consider an alternative approach: while maximum likelihood sequence estimation (MLSE) 

is indeed optimal, it may be too complex for practical implementation in some cases.  

So, what are the alternatives? Even though MLSE is theoretically the best, it might be 

impractical for certain applications due to its computational demands. In such scenarios, 

simpler, albeit sub-optimal, methods may be more feasible. These methods might involve 

simpler tasks like deconvolving the channel or identifying symbols through alternative 

approaches that don't achieve the same level of optimality as MLSE but are more 

manageable in practice. 

To summarize our discussion so far: we've covered the branch metric computations 

necessary for MLSE, which is the optimal detection strategy in additive white Gaussian 

noise (AWGN) environments. However, a naive approach, such as trying all possible 

symbol combinations, requires an astronomical number of computations. For instance, for 

1000 QPSK symbols, this could amount to 41000 computations, which is impractically high. 

By breaking down the problem and leveraging incremental metrics, we can simplify the 



process. This allows us to make decisions dynamically as we observe patterns and paths 

that suggest optimal decisions.  

In our upcoming lectures, we will explore whether there are simpler, more implementable 

methods for decision-making in symbol detection. While the Viterbi algorithm remains 

optimal, practical constraints may lead us to consider other sub-optimal but more 

manageable algorithms. Stay tuned as we delve into these alternatives in the next sessions. 

Thank you. 


