
Digital Communication using GNU Radio

Prof. Kumar Appaiah

Department of Electrical Engineering

Indian Institute of Technology Bombay

Week-09

Lecture-42

Detection Strategy for Dispersive Channels

Hello, and welcome to this lecture on digital communication using GNU Radio. My name

is Kumar Appiah, and I am from the Department of Electrical Engineering at IIT Bombay.

Today’s lecture continues our exploration of maximum likelihood sequence estimation

(MLSE). In our previous lecture, we discussed the challenge of detecting a sequence of

symbols transmitted through a channel with a convolutional characteristic. Essentially, due

to the mixing of symbols in the channel, we experience what is known as intersymbol

interference (ISI).

(Refer Slide Time: 02:09)

To recap, we developed a noise model and formulated an optimal detection strategy, which

ultimately leads to optimizing a particular expression. This expression, denoted by Λ𝐵𝐵, is

given by:

Λ𝐵𝐵 = Re(⟨𝑦𝑦, 𝑆𝑆𝐵𝐵⟩) −
|𝑆𝑆𝐵𝐵|2

2

Here, Sb represents the received signal, which embodies the combined effects of the

channel, including its convolutional nature, and y is the observation. The real challenge

lies in calculating all possible combinations of Sb, as they account for both the channel and

modulation.

To illustrate, consider a case where we need to detect 1000 QPSK symbols. With QPSK,

there are four possible symbols per symbol period. Therefore, detecting the sequence

would involve evaluating 41000 combinations, a task that is computationally prohibitive.

This brute-force approach, while theoretically feasible, is practically unattainable due to

the sheer number of computations involved.

(Refer Slide Time: 02:41)

However, a possible avenue for improvement comes from the observation that both y and

Sb are summations of signals accumulated over time. This raises the question: could we

adopt an incremental approach, making decisions progressively rather than evaluating all

possible combinations at once? This is precisely what we aim to explore in this lecture. We

will dissect the problem into two parts to investigate this possibility.

(Refer Slide Time: 06:14)

Let’s start by examining the first term, the real part of ˂y, Sb˃. This can be expanded as:

R(⟨𝑦𝑦, 𝑆𝑆𝐵𝐵⟩) = �Re�𝐵𝐵(𝑘𝑘)
∗ 𝑍𝑍(𝑘𝑘)�

𝑘𝑘

How do we arrive at this? Essentially, it involves performing matched filtering. By

applying a matched filter to the observation y, we compute ˂y, Sb˃, yielding Zn, where

𝑍𝑍𝑛𝑛 = 𝑦𝑦∗PM𝑓𝑓(𝑘𝑘𝑘𝑘). Let's formalize this step by step.

To revisit the key expression for Λ𝐵𝐵, it is given by:

Λ𝐵𝐵 = R(⟨𝑦𝑦, 𝑆𝑆𝐵𝐵⟩) −
|𝑆𝑆𝐵𝐵|2

2

Recall that the construction of Sb involves a summation over Bk T, accounting for the shifts

in time, specifically T - kT.

(Refer Slide Time: 08:11)

hat is essentially what Sb represents. Now, let's define Zk to correspond to the k-th term.

How do we define this? Zk is given by the matched filter applied to y at kT, i.e., 𝑍𝑍𝑘𝑘 =

𝑦𝑦∗𝑝𝑝matched filter(𝑘𝑘𝑘𝑘). This should be intuitive because ˂ y, Sb˃ is actually the integral of y(T)

and Sb*(T), and it reduces to the same operation we’re describing here. Essentially, you're

just taking the k-th sample in this process.

Mathematically, this is expressed as:

⟨𝑦𝑦, 𝑆𝑆𝐵𝐵⟩ = �𝑦𝑦(𝑇𝑇)𝑆𝑆𝐵𝐵∗(𝑇𝑇)  𝑑𝑑𝑑𝑑

Now, if you recall from our earlier discussions, the matched filter 𝑝𝑝Mf(𝑇𝑇) is the complex

conjugate of the original pulse p(-T), so 𝑝𝑝Mf(𝑇𝑇) = 𝑝𝑝∗(−𝑇𝑇). Given this, when you evaluate

the integral, Zk turns out to be ∫𝑦𝑦(𝑇𝑇)𝑝𝑝∗(𝑇𝑇 − 𝑘𝑘𝑘𝑘)  𝑑𝑑𝑑𝑑. In simpler terms, Zk is computed by

applying the matched filter, then sampling at discrete intervals.

What’s crucial here is that Zk retains the same meaning as it did when there was no channel

involved, it represents the sampled outputs of the matched filter. However, in this scenario,

due to the presence of the channel, Zk carries information not only about the current symbol

but potentially about previous symbols as well.

Now, moving forward, let's revisit the expression ˂y, Sb˃. This is given by the summation

over k of 𝐵𝐵𝑘𝑘∗𝑍𝑍𝑘𝑘 . How did we derive this? It becomes evident when you write out the

definition explicitly:

⟨𝑦𝑦, 𝑆𝑆𝐵𝐵⟩ = �𝑦𝑦(𝑇𝑇)𝑆𝑆𝐵𝐵∗(𝑇𝑇)  𝑑𝑑𝑑𝑑

If you decompose the signals y(T) and Sb(T), you will find that they share similar

structures. When you break it down, you realize that Zk essentially handles this summation.

That is, Zk corresponds to the matched filter's output at the sample point T - kT.

The expression can be rewritten as:

⟨𝑦𝑦, 𝑆𝑆𝐵𝐵⟩ = �𝐵𝐵𝑘𝑘∗𝑍𝑍𝑘𝑘
𝑘𝑘

where Zk is formed by integrating y(T) with the matched filter 𝑝𝑝∗(𝑇𝑇 − 𝑘𝑘𝑘𝑘). The key insight

here is that since Sb is a summation of several shifted pulse shapes, Zk similarly involves

summing over multiple such terms. By taking the summation inside the integral, you

ultimately obtain the expression we just defined.

Now, an important point to note is that we're aiming for an incremental detection strategy,

one where we can progressively add terms and make decisions about the transmitted

symbols. This is the core idea we are building towards.

(Refer Slide Time: 12:54)

Next, we will define the autocorrelation sequence of the channel, specifically for the

sampled version of the channel. What does this mean? Think of it this way: when you

calculate the magnitude squared of y, you are implicitly convolving it with the channel. If

you multiply y by S and integrate, you essentially end up correlating the channel's response

with itself. Mathematically, this results in convolving the channel’s impulse response h

with its time-reversed counterpart, ℎ∗(−𝑡𝑡) . We refer to this as the autocorrelation

sequence.

These samples of the autocorrelation function will prove to be quite valuable as we move

forward with our derivations. For now, let's hold onto this concept as it will become clearer

later in the process.

Let me now introduce a new definition. I will call it Hm, and it is defined as follows:

𝐻𝐻𝑚𝑚 = �𝑝𝑝(𝑡𝑡) ⋅ 𝑝𝑝∗(𝑡𝑡 − 𝑚𝑚𝑚𝑚) 𝑑𝑑𝑑𝑑

Here, T represents the symbol duration, and Hm essentially forms an autocorrelation

sequence. This autocorrelation property holds even for complex channels. Given that Hm

is an autocorrelation function, it also possesses the conjugate symmetry property. For

instance, 𝐻𝐻∗(−𝑚𝑚) must equal:

�𝑝𝑝(𝑡𝑡) ⋅ 𝑝𝑝∗(𝑡𝑡 + 𝑚𝑚𝑚𝑚) 𝑑𝑑𝑑𝑑

You can see that this integral is computed over t, and by substituting t + mT as a new

variable, say u, the expression simplifies to:

�𝑝𝑝∗(𝑢𝑢 −𝑚𝑚𝑚𝑚) ⋅ 𝑝𝑝(𝑢𝑢) 𝑑𝑑𝑑𝑑

(Refer Slide Time: 16:23)

However, this is the same as our original expression for Hm, confirming that the property

holds. This definition of Hm, which represents the deterministic autocorrelation of the

channel, will prove very useful in our derivations moving forward. It’s much easier to work

with than the convolution of p and p*, sampled at different intervals, which is more complex

and challenging to express.

Effectively, Hm represents the convolution of p and 𝑝𝑝∗ but in a shifted form, specifically

the convolution of 𝑝𝑝∗(−𝑡𝑡) with p(t). With this autocorrelation sequence established, we

can now move on to the next key term, which is |Sb|2, the squared norm of Sb.

Intuitively, | Sb |2 represents the energy of the combined signal, or more formally, the

integral of the squared magnitude of the signal. But it’s important to remember that this

quantity also contains information about the transmitted symbols, so we will need to

account for that as we proceed.

(Refer Slide Time: 20:34)

Let’s begin with the definition of | Sb |2. Recall that Sb was defined as the summation:

𝑆𝑆𝐵𝐵 = �𝐵𝐵𝑘𝑘
𝑘𝑘

⋅ 𝑝𝑝(𝑡𝑡 − 𝑘𝑘𝑘𝑘)

Thus, we can express the squared norm as:

|𝑆𝑆𝐵𝐵|2 = ⟨𝑆𝑆𝐵𝐵, 𝑆𝑆𝐵𝐵⟩

However, to facilitate some manipulations in the upcoming summation, I’m going to use

different indices for the two instances of Sb. So I’ll rewrite this as:

|𝑆𝑆𝐵𝐵|2 = �𝐵𝐵𝑘𝑘
𝑘𝑘

⋅ 𝑝𝑝(𝑡𝑡 − 𝑘𝑘𝑘𝑘),  �𝐵𝐵𝑚𝑚
𝑚𝑚

⋅ 𝑝𝑝(𝑡𝑡 − 𝑚𝑚𝑚𝑚)

There are no surprises here, I’m merely re-expressing Sb using different indices so we can

manipulate the summations more easily. If we were to use the same index for both terms,

the double summation could become incorrect or unnecessarily complicated.

(Refer Slide Time: 24:37)

Now, we want to simplify this expression. Notice that the inner product operation is linear,

meaning we can rearrange the summation order and the inner products without issue. Thus,

we can rewrite it as a double summation:

��𝐵𝐵𝑘𝑘
𝑚𝑚𝑘𝑘

⋅ 𝐵𝐵𝑚𝑚∗ �𝑝𝑝(𝑡𝑡 − 𝑘𝑘𝑘𝑘) ⋅ 𝑝𝑝∗(𝑡𝑡 − 𝑚𝑚𝑚𝑚) 𝑑𝑑𝑑𝑑

At this point, it's helpful to recall our earlier definition of Hm. If you compare this term

with the expression for Hm, you’ll notice a close relationship. Specifically, the integral:

�𝑝𝑝(𝑡𝑡) ⋅ 𝑝𝑝∗(𝑡𝑡 − 𝑚𝑚𝑚𝑚 + 𝑘𝑘𝑘𝑘) 𝑑𝑑𝑑𝑑

can be transformed into a form resembling Hm by shifting the variables appropriately. This

manipulation significantly simplifies the expression, allowing us to represent the result in

terms of Hm.

Thus, we can now express the squared norm as:

|𝑆𝑆𝐵𝐵|2 = ��𝐵𝐵𝑘𝑘
𝑚𝑚𝑘𝑘

⋅ 𝐵𝐵𝑚𝑚∗ ⋅ 𝐻𝐻𝑚𝑚−𝑘𝑘

This greatly simplifies the calculations, leveraging the properties of the autocorrelation

sequence Hm.

Alright, let's delve into this carefully and explain the reasoning behind this sequence of

steps. We’ll be performing some strategic manipulations, breaking things down into parts,

and then reassembling them in a more intuitive form.

First, let’s not get too caught up in the integral form. Instead, let's focus on splitting the

summation based on the value of m in relation to k. So, I’m going to rewrite this expression

into three distinct parts:

1. The first part corresponds to when m = k. In this case, the expression simplifies to |𝑏𝑏𝑘𝑘|2 ⋅

ℎ(0). This is because we’re primarily interested in the k-th symbol, and for m = k, the

autocorrelation sequence h(m - k) reduces to h(0), which corresponds to the energy

contribution of that specific symbol.

2. The second part involves summing over all terms where m < k. Here, the expression

becomes ∑ ∑ 𝑏𝑏𝑘𝑘𝑚𝑚<𝑘𝑘𝑘𝑘 ⋅ 𝑏𝑏𝑚𝑚∗ ⋅ ℎ(𝑚𝑚 − 𝑘𝑘). This accounts for contributions where the index m

is less than k, capturing the interactions of previous symbols with the current one due to

the convolutional nature of the channel.

3. The third part deals with the scenario where m > k. In this case, the expression is

∑ ∑ 𝑏𝑏𝑘𝑘𝑚𝑚>𝑘𝑘𝑘𝑘 ⋅ 𝑏𝑏𝑚𝑚∗ ⋅ ℎ(𝑚𝑚 − 𝑘𝑘) . Here, the contributions come from future symbols

influencing the current symbol because of the channel's dispersive characteristics.

So, the overall expression now reads:

��|𝑏𝑏𝑘𝑘|2 ⋅ ℎ(0)�
𝑘𝑘

+ � � 𝑏𝑏𝑘𝑘
𝑚𝑚<𝑘𝑘𝑘𝑘

⋅ 𝑏𝑏𝑚𝑚∗ ⋅ ℎ(𝑚𝑚 − 𝑘𝑘) + � � 𝑏𝑏𝑘𝑘
𝑚𝑚>𝑘𝑘𝑘𝑘

⋅ 𝑏𝑏𝑚𝑚∗ ⋅ ℎ(𝑚𝑚 − 𝑘𝑘)

Now, to make this a bit more elegant, let's exploit a small trick: we can swap the roles of k

and m in the third term. This allows us to rewrite it as:

� � 𝑏𝑏𝑚𝑚
𝑘𝑘>𝑚𝑚𝑚𝑚

⋅ 𝑏𝑏𝑘𝑘∗ ⋅ ℎ(𝑘𝑘 −𝑚𝑚)

By doing this, we notice that the second and third terms are now structurally similar,

meaning we can combine them.

So, combining these two terms, the expression becomes:

�|𝑏𝑏𝑘𝑘|2
𝑘𝑘

⋅ ℎ(0) + � ��𝑏𝑏𝑘𝑘 ⋅ 𝑏𝑏𝑚𝑚∗ ⋅ ℎ(𝑚𝑚 − 𝑘𝑘) + 𝑏𝑏𝑘𝑘∗ ⋅ 𝑏𝑏𝑚𝑚 ⋅ ℎ(𝑘𝑘 −𝑚𝑚)�
𝑚𝑚<𝑘𝑘𝑘𝑘

Here, the terms within the summation have a nice symmetry: 𝑏𝑏𝑘𝑘 ⋅ 𝑏𝑏𝑚𝑚∗ ⋅ ℎ(𝑚𝑚− 𝑘𝑘) 𝑎𝑎𝑎𝑎𝑎𝑎 𝑏𝑏𝑘𝑘∗ ⋅

𝑏𝑏𝑚𝑚 ⋅ ℎ(𝑘𝑘 −𝑚𝑚) are essentially mirror images of each other.

Thus, we’ve effectively restructured the summation, combining related terms to arrive at a

cleaner, more intuitive form that captures the interactions between symbols in a dispersive

channel. This step simplifies our calculations moving forward, making the entire

expression much more manageable.

Now, here’s where the interesting trick comes into play. We begin with the summation

over k, starting with the term |𝑏𝑏𝑘𝑘|2 ⋅ ℎ(0), which accounts for the energy of the current

symbol. Then, for the second term, we introduce a double summation over k and m, where

m < k. This double summation includes an interaction term that comes with two times the

real part of the expression, and here’s why: the expression 𝑏𝑏𝑘𝑘 ⋅ 𝑏𝑏𝑚𝑚∗ ⋅ ℎ(𝑘𝑘 −𝑚𝑚) involves

both the conjugate terms h(k - m) and ℎ(𝑚𝑚 − 𝑘𝑘)∗, which are complex conjugates of each

other. Therefore, we take twice the real part.

To simplify things further, we can write this as 2 ⋅ Re�𝑏𝑏𝑘𝑘 ⋅ 𝑏𝑏𝑚𝑚∗ ⋅ ℎ(𝑘𝑘 −𝑚𝑚)�, though it’s

equally valid to express it as 2 ⋅ Re�𝑏𝑏𝑘𝑘∗ ⋅ 𝑏𝑏𝑚𝑚 ⋅ ℎ(𝑚𝑚− 𝑘𝑘)�. Both forms are equivalent, but

for this explanation, I’ve chosen the former. What’s crucial here is that this term

encapsulates the interactions due to inter-symbol interference (ISI), which arises because

of the channel’s presence.

Notice that if the channel didn’t cause interference (i.e., if it were ideal), h(k - m) would be

non-zero only when k = m. In that case, you’d only have terms involving |bk|2, and the

scenario would reduce to a straightforward AWGN (Additive White Gaussian Noise)

detection approach. So, this interference term is what captures the effect of the channel on

the symbols.

Now, let's define λ𝑏𝑏, our overall metric, which represents the cost function or metric for

the set of symbols 𝑏𝑏. It’s given as the summation over k, but we must recall the earlier

expression where we had ∑𝑏𝑏𝑘𝑘∗ ⋅ 𝑧𝑧𝑘𝑘, representing the matched filter outputs. In this case, λ𝑏𝑏

is expressed as:

λ𝑏𝑏 = ��𝑏𝑏𝑘𝑘∗ ⋅ 𝑧𝑧𝑘𝑘 −
|𝑏𝑏𝑘𝑘|2 ⋅ ℎ(0)

2
− � Re�𝑏𝑏𝑘𝑘∗ ⋅ 𝑏𝑏𝑚𝑚 ⋅ ℎ(𝑘𝑘 −𝑚𝑚)�

𝑚𝑚<𝑘𝑘

�
𝑘𝑘

Notice that we subtract this inter-symbol interference term because of the negative

contribution due to the channel’s effect.

Now, importantly, our next assumption simplifies things significantly. In practical systems,

we often assume the channel has a finite length, specifically, it behaves like an FIR (Finite

Impulse Response) filter. This means that the channel’s response h(k) is non-zero only for

a finite number of taps, say l taps. So, we assume that h(k) = 0 for all k beyond l - 1. In

other words, the channel introduces interference only for the most recent l symbols.

Given this assumption, we can rewrite λ𝑏𝑏 more succinctly:

λ𝑏𝑏 = ��𝑏𝑏𝑘𝑘∗ ⋅ 𝑧𝑧𝑘𝑘 −
|𝑏𝑏𝑘𝑘|2 ⋅ ℎ(0)

2
− � Re�𝑏𝑏𝑘𝑘∗ ⋅ 𝑏𝑏𝑚𝑚 ⋅ ℎ(𝑘𝑘 −𝑚𝑚)�

𝑘𝑘−1

𝑚𝑚=𝑘𝑘−𝑙𝑙

�
𝑘𝑘

Here, we observe that the decision on the current symbol bk is influenced only by the past

l symbols due to inter-symbol interference (ISI) introduced by the channel. This reflects

the memory effect of the channel, indicating that decisions on bk are affected by the

preceding l symbols. This is the key insight: you only need to consider the last l terms of

memory when making a decision on the current symbol, which greatly simplifies the

complexity of the problem.

So, now we’ve been eagerly discussing this concept of an additive metric. But why exactly

is this called an additive metric? Well, the reason is that it’s expressed as a summation over

k, which allows us to proceed incrementally. Each term simply adds to the previous ones,

so we can keep building the metric step by step. To express this more formally, let’s use

some notation. We’ll denote it as λ𝑘𝑘 and write it as a function of bk and Sk, where Sk

represents a part of the signal vector Sb. The exact notation might not be as critical here;

what’s important is understanding how the k-th term evolves in this context.

So, this can be written as:

λ𝑘𝑘 = 𝑏𝑏𝑘𝑘∗ ⋅ 𝑍𝑍𝑘𝑘 −
|𝑏𝑏𝑘𝑘|2 ⋅ 𝐻𝐻0

2
− Re�𝑏𝑏𝑘𝑘∗ ⋅ 𝑏𝑏𝑚𝑚 ⋅ 𝐻𝐻(𝑘𝑘 −𝑚𝑚)�,

where Zk represents the received signal, H0 is the channel gain, and the real part term

captures the inter-symbol interference (ISI). I almost forgot the summation symbol here,

so let me correct that: there’s a summation over the past symbols, typically over m, which

accounts for the memory introduced by the channel.

Now, the beauty of this additive metric is that it’s simple to compute. The key reason is

that you only need to account for the last l symbols due to the memory introduced by the

finite impulse response (FIR) of the channel. This significantly reduces the computational

burden because you don’t need to evaluate all possible symbol combinations across the

entire sequence.

However, keep in mind that this additive metric alone doesn’t directly tell you the optimal

value of bk. Instead, it provides a framework that helps you combine different possibilities

for each symbol. Let me give you a clearer example of how this works.

(Refer Slide Time: 26:55)

Suppose we focus on the past l symbols, specifically 𝑏𝑏𝑘𝑘−1, 𝑏𝑏𝑘𝑘−2, … , 𝑏𝑏𝑘𝑘−𝑙𝑙. For simplicity,

let’s assume l = 1. In this case, the metric simplifies, and we only need to consider the

immediate past symbol, bk-1. Let’s say we are working with binary phase shift keying

(BPSK), so bk can be either +1 or -1.

In this scenario, the additive metric becomes:

λ𝑘𝑘 = 𝑏𝑏𝑘𝑘∗ ⋅ 𝑍𝑍𝑘𝑘 −
𝐻𝐻0
2
− 𝑏𝑏𝑘𝑘∗ ⋅ 𝑏𝑏𝑘𝑘−1 ⋅ 𝐻𝐻(−1),

where H(-1) accounts for the inter-symbol interference caused by the previous symbol.

Since l = 1, we only have one past term, so there’s no need for a summation.

Now, we can evaluate this metric for all possible combinations of bk and bk-1. For instance,

we’ll calculate the metric for:

• bk = +1 and bk-1 = +1,

• bk = +1 and bk-1 = -1,

• bk = -1 and bk-1 = +1,

• bk = -1 and bk-1 = -1.

We evaluate the metric for each of these combinations, and this process continues

incrementally as we move forward through the sequence. After evaluating bk, we move on

to bk+1, then bk+2, and so forth. Each evaluation builds upon the previous one, incorporating

the effects of inter-symbol interference, until we reach a point where we can make reliable

decisions on the past symbols.

(Refer Slide Time: 28:30)

This approach ensures that the complexity of detecting the symbols remains manageable,

even in the presence of channel interference, and leverages the structure of the problem to

achieve optimal decisions without evaluating every possible sequence of symbols.

The question we now face is: can this approach actually be implemented effectively? This

is precisely where the Viterbi algorithm comes into play. The idea is to construct what is

known as a trellis diagram. Let’s assume that at time k, the symbol bk can take on a value

of either +1 or -1. Similarly, at time k + 1, bk+1 can be either +1 or -1, and the same applies

at time k + 2, and so on.

What we’re going to do is evaluate the metric λ𝑘𝑘 for each possible transition:

• Evaluate the metric for a transition from +1 to +1,

• Evaluate the metric for a transition from +1 to -1,

• Evaluate the metric for a transition from -1 to +1,

• Evaluate the metric for a transition from -1 to -1.

(Refer Slide Time: 29:05)

We’ll continue this process step by step. The key point here is that these metrics are

additive, this is because we’re dealing with a norm squared and a summation over k. So,

we can start adding the metrics at each point: add the metric for this path, add the metric

for that path, and so forth. As we move forward, these paths will correspond to different

symbol sequences.

Now, for each of the possible paths in the trellis diagram, we will evaluate the total metric.

Suppose you have two paths leading to a particular point: one will have a higher metric

and the other a lower one, assuming we want to maximize the metric. Naturally, the path

with the higher metric will be the one that survives, and the path with the lower metric will

be discarded. This is the crux of the Viterbi algorithm, at each step, we eliminate less likely

paths and retain only the optimal ones.

By following this approach through the trellis diagram, we significantly reduce the

complexity of the search. Instead of having to evaluate all possible combinations of

symbols, which would involve an unmanageable number of searches, potentially

something like 41000 searches, we use the trellis and the Viterbi algorithm to make decisions

more efficiently.

This is where the Viterbi algorithm becomes incredibly useful. We’ll delve into the details

of the Viterbi algorithm in the next lecture. To summarize what we’ve covered so far, we

took the real part of the inner product ˂ y, Sb˃ and the norm |Sb|2 and broke them into more

manageable components. Using these components, we derived an additive metric, which

allows us to incrementally detect the received symbols in an optimal manner.

It may not be immediately obvious how this all comes together, but in the next lecture,

we’ll go over the Viterbi algorithm in detail, along with an example that will make

everything clearer. We’ll continue with the example problem we started discussing earlier.

That’s all for now. Thank you.

