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Hello, and welcome to this lecture on digital communication using GNU Radio. My name 

is Kumar Appiah, and I am from the Department of Electrical Engineering at IIT Bombay. 

Today’s lecture continues our exploration of maximum likelihood sequence estimation 

(MLSE). In our previous lecture, we discussed the challenge of detecting a sequence of 

symbols transmitted through a channel with a convolutional characteristic. Essentially, due 

to the mixing of symbols in the channel, we experience what is known as intersymbol 

interference (ISI). 
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To recap, we developed a noise model and formulated an optimal detection strategy, which 

ultimately leads to optimizing a particular expression. This expression, denoted by Λ𝐵𝐵, is 

given by:  

Λ𝐵𝐵 = Re(⟨𝑦𝑦, 𝑆𝑆𝐵𝐵⟩) −
|𝑆𝑆𝐵𝐵|2

2
 

Here, Sb represents the received signal, which embodies the combined effects of the 

channel, including its convolutional nature, and y is the observation. The real challenge 

lies in calculating all possible combinations of Sb, as they account for both the channel and 

modulation. 

To illustrate, consider a case where we need to detect 1000 QPSK symbols. With QPSK, 

there are four possible symbols per symbol period. Therefore, detecting the sequence 

would involve evaluating 41000 combinations, a task that is computationally prohibitive. 

This brute-force approach, while theoretically feasible, is practically unattainable due to 

the sheer number of computations involved. 
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However, a possible avenue for improvement comes from the observation that both y and 

Sb are summations of signals accumulated over time. This raises the question: could we 

adopt an incremental approach, making decisions progressively rather than evaluating all 

possible combinations at once? This is precisely what we aim to explore in this lecture. We 

will dissect the problem into two parts to investigate this possibility. 
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Let’s start by examining the first term, the real part of ˂y, Sb˃. This can be expanded as: 

R(⟨𝑦𝑦, 𝑆𝑆𝐵𝐵⟩) = �Re�𝐵𝐵(𝑘𝑘)
∗ 𝑍𝑍(𝑘𝑘)�

𝑘𝑘

 

How do we arrive at this? Essentially, it involves performing matched filtering. By 

applying a matched filter to the observation y, we compute ˂y, Sb˃, yielding Zn, where 

𝑍𝑍𝑛𝑛 = 𝑦𝑦∗PM𝑓𝑓(𝑘𝑘𝑘𝑘). Let's formalize this step by step. 

To revisit the key expression for Λ𝐵𝐵, it is given by: 



Λ𝐵𝐵 = R(⟨𝑦𝑦, 𝑆𝑆𝐵𝐵⟩) −
|𝑆𝑆𝐵𝐵|2

2
 

Recall that the construction of Sb involves a summation over Bk T, accounting for the shifts 

in time, specifically T - kT. 
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hat is essentially what Sb represents. Now, let's define Zk to correspond to the k-th term. 

How do we define this? Zk is given by the matched filter applied to y at kT, i.e., 𝑍𝑍𝑘𝑘 =

𝑦𝑦∗𝑝𝑝matched filter(𝑘𝑘𝑘𝑘). This should be intuitive because ˂ y, Sb˃ is actually the integral of y(T) 

and Sb*(T), and it reduces to the same operation we’re describing here. Essentially, you're 

just taking the k-th sample in this process. 

Mathematically, this is expressed as:  

⟨𝑦𝑦, 𝑆𝑆𝐵𝐵⟩ = �𝑦𝑦(𝑇𝑇)𝑆𝑆𝐵𝐵∗(𝑇𝑇)  𝑑𝑑𝑑𝑑 



Now, if you recall from our earlier discussions, the matched filter 𝑝𝑝Mf(𝑇𝑇) is the complex 

conjugate of the original pulse p(-T), so 𝑝𝑝Mf(𝑇𝑇) = 𝑝𝑝∗(−𝑇𝑇). Given this, when you evaluate 

the integral, Zk turns out to be ∫𝑦𝑦(𝑇𝑇)𝑝𝑝∗(𝑇𝑇 − 𝑘𝑘𝑘𝑘)  𝑑𝑑𝑑𝑑. In simpler terms, Zk is computed by 

applying the matched filter, then sampling at discrete intervals. 

What’s crucial here is that Zk retains the same meaning as it did when there was no channel 

involved, it represents the sampled outputs of the matched filter. However, in this scenario, 

due to the presence of the channel, Zk carries information not only about the current symbol 

but potentially about previous symbols as well. 

Now, moving forward, let's revisit the expression ˂y, Sb˃. This is given by the summation 

over k of 𝐵𝐵𝑘𝑘∗𝑍𝑍𝑘𝑘 . How did we derive this? It becomes evident when you write out the 

definition explicitly:  

⟨𝑦𝑦, 𝑆𝑆𝐵𝐵⟩ = �𝑦𝑦(𝑇𝑇)𝑆𝑆𝐵𝐵∗(𝑇𝑇)  𝑑𝑑𝑑𝑑 

If you decompose the signals y(T) and Sb(T), you will find that they share similar 

structures. When you break it down, you realize that Zk essentially handles this summation. 

That is, Zk corresponds to the matched filter's output at the sample point T - kT.  

The expression can be rewritten as:  

⟨𝑦𝑦, 𝑆𝑆𝐵𝐵⟩ = �𝐵𝐵𝑘𝑘∗𝑍𝑍𝑘𝑘
𝑘𝑘

 

where Zk is formed by integrating y(T) with the matched filter 𝑝𝑝∗(𝑇𝑇 − 𝑘𝑘𝑘𝑘). The key insight 

here is that since Sb is a summation of several shifted pulse shapes, Zk similarly involves 

summing over multiple such terms. By taking the summation inside the integral, you 

ultimately obtain the expression we just defined. 

Now, an important point to note is that we're aiming for an incremental detection strategy, 

one where we can progressively add terms and make decisions about the transmitted 

symbols. This is the core idea we are building towards. 
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Next, we will define the autocorrelation sequence of the channel, specifically for the 

sampled version of the channel. What does this mean? Think of it this way: when you 

calculate the magnitude squared of y, you are implicitly convolving it with the channel. If 

you multiply y by S and integrate, you essentially end up correlating the channel's response 

with itself. Mathematically, this results in convolving the channel’s impulse response h 

with its time-reversed counterpart, ℎ∗(−𝑡𝑡) . We refer to this as the autocorrelation 

sequence. 

These samples of the autocorrelation function will prove to be quite valuable as we move 

forward with our derivations. For now, let's hold onto this concept as it will become clearer 

later in the process. 

Let me now introduce a new definition. I will call it Hm, and it is defined as follows:  

𝐻𝐻𝑚𝑚 = �𝑝𝑝(𝑡𝑡) ⋅ 𝑝𝑝∗(𝑡𝑡 − 𝑚𝑚𝑚𝑚) 𝑑𝑑𝑑𝑑 



Here, T represents the symbol duration, and Hm essentially forms an autocorrelation 

sequence. This autocorrelation property holds even for complex channels. Given that Hm 

is an autocorrelation function, it also possesses the conjugate symmetry property. For 

instance, 𝐻𝐻∗(−𝑚𝑚) must equal:  

�𝑝𝑝(𝑡𝑡) ⋅ 𝑝𝑝∗(𝑡𝑡 + 𝑚𝑚𝑚𝑚) 𝑑𝑑𝑑𝑑 

You can see that this integral is computed over t, and by substituting t + mT as a new 

variable, say u, the expression simplifies to:  

�𝑝𝑝∗(𝑢𝑢 −𝑚𝑚𝑚𝑚) ⋅ 𝑝𝑝(𝑢𝑢) 𝑑𝑑𝑑𝑑 
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However, this is the same as our original expression for Hm, confirming that the property 

holds. This definition of Hm, which represents the deterministic autocorrelation of the 

channel, will prove very useful in our derivations moving forward. It’s much easier to work 



with than the convolution of p and p*, sampled at different intervals, which is more complex 

and challenging to express. 

Effectively, Hm represents the convolution of p and 𝑝𝑝∗ but in a shifted form, specifically 

the convolution of 𝑝𝑝∗(−𝑡𝑡) with p(t). With this autocorrelation sequence established, we 

can now move on to the next key term, which is |Sb|2, the squared norm of Sb. 

Intuitively, | Sb |2 represents the energy of the combined signal, or more formally, the 

integral of the squared magnitude of the signal. But it’s important to remember that this 

quantity also contains information about the transmitted symbols, so we will need to 

account for that as we proceed. 
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Let’s begin with the definition of | Sb |2. Recall that Sb was defined as the summation:  

𝑆𝑆𝐵𝐵 = �𝐵𝐵𝑘𝑘
𝑘𝑘

⋅ 𝑝𝑝(𝑡𝑡 − 𝑘𝑘𝑘𝑘) 

Thus, we can express the squared norm as:  



|𝑆𝑆𝐵𝐵|2 = ⟨𝑆𝑆𝐵𝐵, 𝑆𝑆𝐵𝐵⟩ 

However, to facilitate some manipulations in the upcoming summation, I’m going to use 

different indices for the two instances of Sb. So I’ll rewrite this as:  

|𝑆𝑆𝐵𝐵|2 = �𝐵𝐵𝑘𝑘
𝑘𝑘

⋅ 𝑝𝑝(𝑡𝑡 − 𝑘𝑘𝑘𝑘),  �𝐵𝐵𝑚𝑚
𝑚𝑚

⋅ 𝑝𝑝(𝑡𝑡 − 𝑚𝑚𝑚𝑚) 

There are no surprises here, I’m merely re-expressing Sb using different indices so we can 

manipulate the summations more easily. If we were to use the same index for both terms, 

the double summation could become incorrect or unnecessarily complicated. 
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Now, we want to simplify this expression. Notice that the inner product operation is linear, 

meaning we can rearrange the summation order and the inner products without issue. Thus, 

we can rewrite it as a double summation:  

��𝐵𝐵𝑘𝑘
𝑚𝑚𝑘𝑘

⋅ 𝐵𝐵𝑚𝑚∗ �𝑝𝑝(𝑡𝑡 − 𝑘𝑘𝑘𝑘) ⋅ 𝑝𝑝∗(𝑡𝑡 − 𝑚𝑚𝑚𝑚) 𝑑𝑑𝑑𝑑 



At this point, it's helpful to recall our earlier definition of Hm. If you compare this term 

with the expression for Hm, you’ll notice a close relationship. Specifically, the integral:  

�𝑝𝑝(𝑡𝑡) ⋅ 𝑝𝑝∗(𝑡𝑡 − 𝑚𝑚𝑚𝑚 + 𝑘𝑘𝑘𝑘) 𝑑𝑑𝑑𝑑 

can be transformed into a form resembling Hm by shifting the variables appropriately. This 

manipulation significantly simplifies the expression, allowing us to represent the result in 

terms of Hm. 

Thus, we can now express the squared norm as:  

|𝑆𝑆𝐵𝐵|2 = ��𝐵𝐵𝑘𝑘
𝑚𝑚𝑘𝑘

⋅ 𝐵𝐵𝑚𝑚∗ ⋅ 𝐻𝐻𝑚𝑚−𝑘𝑘 

This greatly simplifies the calculations, leveraging the properties of the autocorrelation 

sequence Hm. 

Alright, let's delve into this carefully and explain the reasoning behind this sequence of 

steps. We’ll be performing some strategic manipulations, breaking things down into parts, 

and then reassembling them in a more intuitive form. 

First, let’s not get too caught up in the integral form. Instead, let's focus on splitting the 

summation based on the value of m in relation to k. So, I’m going to rewrite this expression 

into three distinct parts: 

1. The first part corresponds to when m = k. In this case, the expression simplifies to |𝑏𝑏𝑘𝑘|2 ⋅

ℎ(0). This is because we’re primarily interested in the k-th symbol, and for m = k, the 

autocorrelation sequence h(m - k) reduces to h(0), which corresponds to the energy 

contribution of that specific symbol. 

2. The second part involves summing over all terms where m < k. Here, the expression 

becomes ∑ ∑ 𝑏𝑏𝑘𝑘𝑚𝑚<𝑘𝑘𝑘𝑘 ⋅ 𝑏𝑏𝑚𝑚∗ ⋅ ℎ(𝑚𝑚 − 𝑘𝑘). This accounts for contributions where the index m 

is less than k, capturing the interactions of previous symbols with the current one due to 

the convolutional nature of the channel. 



3. The third part deals with the scenario where m > k. In this case, the expression is 

∑ ∑ 𝑏𝑏𝑘𝑘𝑚𝑚>𝑘𝑘𝑘𝑘 ⋅ 𝑏𝑏𝑚𝑚∗ ⋅ ℎ(𝑚𝑚 − 𝑘𝑘) . Here, the contributions come from future symbols 

influencing the current symbol because of the channel's dispersive characteristics. 

So, the overall expression now reads: 

��|𝑏𝑏𝑘𝑘|2 ⋅ ℎ(0)�
𝑘𝑘

+ � � 𝑏𝑏𝑘𝑘
𝑚𝑚<𝑘𝑘𝑘𝑘

⋅ 𝑏𝑏𝑚𝑚∗ ⋅ ℎ(𝑚𝑚 − 𝑘𝑘) + � � 𝑏𝑏𝑘𝑘
𝑚𝑚>𝑘𝑘𝑘𝑘

⋅ 𝑏𝑏𝑚𝑚∗ ⋅ ℎ(𝑚𝑚 − 𝑘𝑘) 

Now, to make this a bit more elegant, let's exploit a small trick: we can swap the roles of k 

and m in the third term. This allows us to rewrite it as: 

� � 𝑏𝑏𝑚𝑚
𝑘𝑘>𝑚𝑚𝑚𝑚

⋅ 𝑏𝑏𝑘𝑘∗ ⋅ ℎ(𝑘𝑘 −𝑚𝑚) 

By doing this, we notice that the second and third terms are now structurally similar, 

meaning we can combine them. 

So, combining these two terms, the expression becomes: 

�|𝑏𝑏𝑘𝑘|2
𝑘𝑘

⋅ ℎ(0) + � ��𝑏𝑏𝑘𝑘 ⋅ 𝑏𝑏𝑚𝑚∗ ⋅ ℎ(𝑚𝑚 − 𝑘𝑘) + 𝑏𝑏𝑘𝑘∗ ⋅ 𝑏𝑏𝑚𝑚 ⋅ ℎ(𝑘𝑘 −𝑚𝑚)�
𝑚𝑚<𝑘𝑘𝑘𝑘

 

Here, the terms within the summation have a nice symmetry: 𝑏𝑏𝑘𝑘 ⋅ 𝑏𝑏𝑚𝑚∗ ⋅ ℎ(𝑚𝑚− 𝑘𝑘) 𝑎𝑎𝑎𝑎𝑎𝑎 𝑏𝑏𝑘𝑘∗ ⋅

𝑏𝑏𝑚𝑚 ⋅ ℎ(𝑘𝑘 −𝑚𝑚) are essentially mirror images of each other. 

Thus, we’ve effectively restructured the summation, combining related terms to arrive at a 

cleaner, more intuitive form that captures the interactions between symbols in a dispersive 

channel. This step simplifies our calculations moving forward, making the entire 

expression much more manageable. 

Now, here’s where the interesting trick comes into play. We begin with the summation 

over k, starting with the term |𝑏𝑏𝑘𝑘|2 ⋅ ℎ(0), which accounts for the energy of the current 

symbol. Then, for the second term, we introduce a double summation over k and m, where 

m < k. This double summation includes an interaction term that comes with two times the 

real part of the expression, and here’s why: the expression 𝑏𝑏𝑘𝑘 ⋅ 𝑏𝑏𝑚𝑚∗ ⋅ ℎ(𝑘𝑘 −𝑚𝑚) involves 



both the conjugate terms h(k - m) and ℎ(𝑚𝑚 − 𝑘𝑘)∗, which are complex conjugates of each 

other. Therefore, we take twice the real part. 

To simplify things further, we can write this as 2 ⋅ Re�𝑏𝑏𝑘𝑘 ⋅ 𝑏𝑏𝑚𝑚∗ ⋅ ℎ(𝑘𝑘 −𝑚𝑚)�, though it’s 

equally valid to express it as 2 ⋅ Re�𝑏𝑏𝑘𝑘∗ ⋅ 𝑏𝑏𝑚𝑚 ⋅ ℎ(𝑚𝑚− 𝑘𝑘)�. Both forms are equivalent, but 

for this explanation, I’ve chosen the former. What’s crucial here is that this term 

encapsulates the interactions due to inter-symbol interference (ISI), which arises because 

of the channel’s presence. 

Notice that if the channel didn’t cause interference (i.e., if it were ideal), h(k - m) would be 

non-zero only when k = m. In that case, you’d only have terms involving |bk|2, and the 

scenario would reduce to a straightforward AWGN (Additive White Gaussian Noise) 

detection approach. So, this interference term is what captures the effect of the channel on 

the symbols. 

Now, let's define λ𝑏𝑏, our overall metric, which represents the cost function or metric for 

the set of symbols 𝑏𝑏. It’s given as the summation over k, but we must recall the earlier 

expression where we had ∑𝑏𝑏𝑘𝑘∗ ⋅ 𝑧𝑧𝑘𝑘, representing the matched filter outputs. In this case, λ𝑏𝑏 

is expressed as: 

λ𝑏𝑏 = ��𝑏𝑏𝑘𝑘∗ ⋅ 𝑧𝑧𝑘𝑘 −
|𝑏𝑏𝑘𝑘|2 ⋅ ℎ(0)

2
− � Re�𝑏𝑏𝑘𝑘∗ ⋅ 𝑏𝑏𝑚𝑚 ⋅ ℎ(𝑘𝑘 −𝑚𝑚)�

𝑚𝑚<𝑘𝑘

�
𝑘𝑘

 

Notice that we subtract this inter-symbol interference term because of the negative 

contribution due to the channel’s effect. 

Now, importantly, our next assumption simplifies things significantly. In practical systems, 

we often assume the channel has a finite length, specifically, it behaves like an FIR (Finite 

Impulse Response) filter. This means that the channel’s response h(k) is non-zero only for 

a finite number of taps, say l taps. So, we assume that h(k) = 0 for all k beyond l - 1. In 

other words, the channel introduces interference only for the most recent l symbols. 

Given this assumption, we can rewrite λ𝑏𝑏 more succinctly: 



λ𝑏𝑏 = ��𝑏𝑏𝑘𝑘∗ ⋅ 𝑧𝑧𝑘𝑘 −
|𝑏𝑏𝑘𝑘|2 ⋅ ℎ(0)

2
− � Re�𝑏𝑏𝑘𝑘∗ ⋅ 𝑏𝑏𝑚𝑚 ⋅ ℎ(𝑘𝑘 −𝑚𝑚)�

𝑘𝑘−1

𝑚𝑚=𝑘𝑘−𝑙𝑙

�
𝑘𝑘

 

Here, we observe that the decision on the current symbol bk is influenced only by the past 

l symbols due to inter-symbol interference (ISI) introduced by the channel. This reflects 

the memory effect of the channel, indicating that decisions on bk are affected by the 

preceding l symbols. This is the key insight: you only need to consider the last l terms of 

memory when making a decision on the current symbol, which greatly simplifies the 

complexity of the problem. 

So, now we’ve been eagerly discussing this concept of an additive metric. But why exactly 

is this called an additive metric? Well, the reason is that it’s expressed as a summation over 

k, which allows us to proceed incrementally. Each term simply adds to the previous ones, 

so we can keep building the metric step by step. To express this more formally, let’s use 

some notation. We’ll denote it as λ𝑘𝑘  and write it as a function of bk and Sk, where Sk 

represents a part of the signal vector Sb. The exact notation might not be as critical here; 

what’s important is understanding how the k-th term evolves in this context. 

So, this can be written as: 

λ𝑘𝑘 = 𝑏𝑏𝑘𝑘∗ ⋅ 𝑍𝑍𝑘𝑘 −
|𝑏𝑏𝑘𝑘|2 ⋅ 𝐻𝐻0

2
− Re�𝑏𝑏𝑘𝑘∗ ⋅ 𝑏𝑏𝑚𝑚 ⋅ 𝐻𝐻(𝑘𝑘 −𝑚𝑚)�, 

where Zk represents the received signal, H0 is the channel gain, and the real part term 

captures the inter-symbol interference (ISI). I almost forgot the summation symbol here, 

so let me correct that: there’s a summation over the past symbols, typically over m, which 

accounts for the memory introduced by the channel. 

Now, the beauty of this additive metric is that it’s simple to compute. The key reason is 

that you only need to account for the last l symbols due to the memory introduced by the 

finite impulse response (FIR) of the channel. This significantly reduces the computational 

burden because you don’t need to evaluate all possible symbol combinations across the 

entire sequence. 



However, keep in mind that this additive metric alone doesn’t directly tell you the optimal 

value of bk. Instead, it provides a framework that helps you combine different possibilities 

for each symbol. Let me give you a clearer example of how this works.  
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Suppose we focus on the past l symbols, specifically 𝑏𝑏𝑘𝑘−1, 𝑏𝑏𝑘𝑘−2, … , 𝑏𝑏𝑘𝑘−𝑙𝑙. For simplicity, 

let’s assume l = 1. In this case, the metric simplifies, and we only need to consider the 

immediate past symbol, bk-1. Let’s say we are working with binary phase shift keying 

(BPSK), so bk can be either +1 or -1. 

In this scenario, the additive metric becomes: 

λ𝑘𝑘 = 𝑏𝑏𝑘𝑘∗ ⋅ 𝑍𝑍𝑘𝑘 −
𝐻𝐻0
2
− 𝑏𝑏𝑘𝑘∗ ⋅ 𝑏𝑏𝑘𝑘−1 ⋅ 𝐻𝐻(−1), 

where H(-1) accounts for the inter-symbol interference caused by the previous symbol. 

Since l = 1, we only have one past term, so there’s no need for a summation. 



Now, we can evaluate this metric for all possible combinations of bk and bk-1. For instance, 

we’ll calculate the metric for: 

• bk = +1 and bk-1 = +1, 

• bk = +1 and bk-1 = -1, 

• bk = -1 and bk-1 = +1, 

• bk = -1 and bk-1 = -1. 

We evaluate the metric for each of these combinations, and this process continues 

incrementally as we move forward through the sequence. After evaluating bk, we move on 

to bk+1, then bk+2, and so forth. Each evaluation builds upon the previous one, incorporating 

the effects of inter-symbol interference, until we reach a point where we can make reliable 

decisions on the past symbols. 
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This approach ensures that the complexity of detecting the symbols remains manageable, 

even in the presence of channel interference, and leverages the structure of the problem to 

achieve optimal decisions without evaluating every possible sequence of symbols. 



The question we now face is: can this approach actually be implemented effectively? This 

is precisely where the Viterbi algorithm comes into play. The idea is to construct what is 

known as a trellis diagram. Let’s assume that at time k, the symbol bk can take on a value 

of either +1 or -1. Similarly, at time k + 1, bk+1 can be either +1 or -1, and the same applies 

at time k + 2, and so on.  

What we’re going to do is evaluate the metric λ𝑘𝑘 for each possible transition:  

• Evaluate the metric for a transition from +1 to +1, 

• Evaluate the metric for a transition from +1 to -1, 

• Evaluate the metric for a transition from -1 to +1, 

• Evaluate the metric for a transition from -1 to -1. 
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We’ll continue this process step by step. The key point here is that these metrics are 

additive, this is because we’re dealing with a norm squared and a summation over k. So, 

we can start adding the metrics at each point: add the metric for this path, add the metric 



for that path, and so forth. As we move forward, these paths will correspond to different 

symbol sequences. 

Now, for each of the possible paths in the trellis diagram, we will evaluate the total metric. 

Suppose you have two paths leading to a particular point: one will have a higher metric 

and the other a lower one, assuming we want to maximize the metric. Naturally, the path 

with the higher metric will be the one that survives, and the path with the lower metric will 

be discarded. This is the crux of the Viterbi algorithm, at each step, we eliminate less likely 

paths and retain only the optimal ones. 

By following this approach through the trellis diagram, we significantly reduce the 

complexity of the search. Instead of having to evaluate all possible combinations of 

symbols, which would involve an unmanageable number of searches, potentially 

something like 41000 searches, we use the trellis and the Viterbi algorithm to make decisions 

more efficiently. 

This is where the Viterbi algorithm becomes incredibly useful. We’ll delve into the details 

of the Viterbi algorithm in the next lecture. To summarize what we’ve covered so far, we 

took the real part of the inner product ˂ y, Sb˃ and the norm |Sb|2 and broke them into more 

manageable components. Using these components, we derived an additive metric, which 

allows us to incrementally detect the received symbols in an optimal manner.  

It may not be immediately obvious how this all comes together, but in the next lecture, 

we’ll go over the Viterbi algorithm in detail, along with an example that will make 

everything clearer. We’ll continue with the example problem we started discussing earlier. 

That’s all for now. Thank you.  


