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  Welcome to this lecture on Digital Communication Using GNU Radio.  In this lecture,
we are going to have a brief recap of signals along with some new concepts.  Many of
these concepts would have been covered in your Signals and Systems course, but we  will
take another look at them with a perspective of digital communication in mind.  In this
lecture, we will recap signals and some common operations on signals that are  relevant
for the purposes of this  course.   We will  then introduce the vector  space picture for
signals.  We will then discover the frequency view in the form of the Fourier transform
and see  how that comes in handy for both analysis and design of signals for digital
communication.

  And we will have several examples to drive home the concepts that we are talking about
in this lecture.  You may recall that vectors are ordered collections of real or complex
numbers.  As an example, if you look at the vector consisting of the elements 

1+1 j

and 

−1−0.2 j,

this  can  be  considered  a  two-dimensional  complex  vector.

  Similarly, the 

[
0
1
0
0
3
]

can be considered as a five-dimensional  real or complex vector.   Most operations on
vectors that you are familiar with remain the same for this course as well.  They will just
extend to newer situations such as signals as we will see.  So it is useful to have the



geometric  picture wherein vectors  are  considered points  in  n-dimensional   coordinate
space either real or complex and it is convenient to consider them in terms  of vector
spaces because several operations on vectors such as dot products or taking  norm are
very, very useful in the context of digital communication as well.   If you recall what
signals are, signals are generally real or complex valued functions  of a single variable,
generally  time  or  frequency.

  So as an example, if you look at the signal, it is a somewhat oscillating signal.  It has a
single value for every value of time.  Generally we will define a signal for all values of 

t

or within an interval thereby  implicitly assuming that it is 0 outside that said interval.
There are also some special signals such as 

δ (t )

or 

u (t )

The  reason  I  call  them  special  is  because  these  do  not  fall  in  the  regular  class  of
functions.

  For example, 

δ (t )

is an impulse.  Therefore its value at 0 is not really defined.  It is defined in terms of an
integral whose area is 1.  Similarly 

u (t )

is the unit step function.  It also has the issue that at 0 its definition is not very evident.

  So if you look at this step function, at 0 the definition is not very clear.  However we
will carry forward the same meanings of these functions or signals as you have  seen in
the context of signals and systems.  When it comes to dot products and inner products, we
are going to extend the definition of these  for the context of signals also.  Dot products
and inner products carry forward the same meaning as they have in the context  of regular
vectors in the maths context.  Dot products and inner products have the same meaning
that they have in the context of vectors  in the mathematical sense, but here we will
extend  the  concept  to  the  context  of  signals   as  well.



  Dot products and inner products are naturally defined by the vector space.  It can be
considered as an inner product of two complex or real vectors 

and v2

The notation that we use is 

and its definition is 

v1
H v2

That is you take every element of 

v1

take its conjugate, multiply it by 

v2

and  add  the   result.   That  is  what  you  have  over  here.

  So component wise conjugate of 

v1

multiplied by the component of 

v2

and addition.  The key thing is that the same concept can be extended to the case of
signals because  if you assume that a signal is just a long vector indexed by 

t

then we can define the  inner product of signals also in the form of an overlap integral
which is just an extension  of the inner product.  For example, if you have two complex
signals 

sand r

then this angle bracket notation 

⟨ s , r ⟩

translates to the



When it comes to energy and norm, once again the same definitions as the maths sense
continue  for vectors, but we are able to extend these two signals.  Norm and energy are
notions of squared distance and for those from an electrical engineering  background the
squared  distance  also  corresponds  to  something  like  power  and  energy.

  For a vector 

v=[v1 v2 ... vN ]
T

the two norm  is defined as 

‖v‖=√∑
k=1

N

|vk|
2

That is you just take the component wise magnitude squared and add them and take the
square root  this results in the two norm.  The square of the two norm can be viewed as
something like the energy in the vector.  For signals, once again using a similar approach
that we used earlier for the inner products,  we can just define the energy of a signal as

‖s‖
2
=⟨ s , s ⟩=∫

−∞

∞

|s ( t )|
2
dt

So  this  definition  extends  from  the  concept  of  vectors  to  signals  naturally.

  Let us now take a look at an example.  In this example, we have two functions or signals

and ϕ2 (t )

over here.  

is 1 between 0 and 1, 

ϕ2 ( t )

is 1 between 1 and 2 and both of these functions  are 0 for all other values of 

t

We are now going to treat 

and ϕ2 ( t )



as so called basis functions more like ingredients  using which you can construct new
signals.  One thing which comes in handy is the fact that 

and ϕ2 (t )

have  some  nice  properties.

  The first is that if you find the integral 

the area under phi 1 is actually  1.  Similarly, if you now find 

∫
−∞

∞

|ϕ2 ( t )|
2
dt=1

the area will be 1.  Another interesting observation is that 

and ϕ2 ( t )

are orthogonal in the sense that  if you find the 

⟨ϕ1 (t ) , ϕ2 ( t ) ⟩

that is if you multiply 

and ϕ2 ( t )

and integrate, you will get 0.  This means that 

and ϕ2 (t )

can  be  considered  like  basis  signals  using  which  you  can  construct   other  signals
conveniently.   Let  us  take  an  example.

  If you now look at

s1 ( t )

over here, it is 

That is you take 



scale it by 

-0.5

that results in a signal which is 

−
1
2

from 0 to 1.  Similarly, you take 

ϕ2 (t )

scale it by 

3
4

and that results in a signal which  is

3
4

between 1 and 2.  The signal 

s1 ( t )

is actually very different from 

and ϕ2 (t )

but you can express  it as a linear combination of

and ϕ2 ( t )

  Therefore, in the vector picture, if you now treat

and ϕ2 ( t )

as something like basis  vectors or base vectors, you can represent the signal 

s1 ( t )

as a 

[−0.5 0.75 ]
T



This gives you a way to express a variety of signals as just the combination of 

and ϕ2 ( t )

where 

and ϕ2 (t )

's components form a vector.  We will learn more about this in subsequent lectures and
their  utility  in the context  of modulation.   But you must also remember that not all
signals between 1 and 2 or between 0 and 2 can be  expressed as a linear combination of

and  ϕ2 ( t )

  Let us look at 

s2 (t ).

s2 (t )

has a structure where it rises from minus half to three fourths between 0 and  1 and then
holds the value three fourths between 1 and 2.  Between 1 and 2, it is evident that the
signal looks a lot like 

ϕ2 ( t )

and in fact, it is  equal to 

0.75ϕ2 ( t )

However, there is no way we can use 

and ϕ2 ( t )

to express this ramp like structure  and therefore, we can say that 

s2 (t )

does  not  belong to  the  set  of  functions  or  signals   that  can  be  obtained  as  a  linear
combination of 

and ϕ2 ( t )

also  known  as  the  span.

  Thus, 



s1 ( t )

is a linear combination of 

and ϕ2 (t )

and belongs to the span of  

and ϕ2 ( t )

but not 

s2 (t )

A common operation between pairs of signals is convolution and convolution is very
standard.   It  corresponds  to  the  act  of  filtering.   This  is  something  which  you have
covered already in signals and systems.  If you have a signal

s1 ( t )

another signal

s2 (t )

the  convolution  is  defined  by  the   flip  and  overlap  and  add  shift.

  That is you take 

s1 ( t )

you flip it to get 

s1 (−t )

and then you shift it by 

τ

to get 

s1 ( t − τ )

and you just have to perform the overlap integral at various  overlaps.  This is something
which you have already covered and therefore, we will not be spending too  much time
on this.  Another aspect that you are aware of is the Fourier transform.  The Fourier
transform  can  be  viewed  as  a  way  by  which  you  can  express  your  signal  as  a



combination of complex exponentials as opposed to just their temporal values.  That is if
you find

X ( f )

using the analysis equation, it is 

x (t ) e− j2π f t dt

  One way to interpret this is that if you take the signals

e− j2π f t

for various  values of

f

you are finding the weightage of 

x (t )

along these signals for each 

f

In other words, this is a way by which you can view 

x (t )

as being expressed as a combination  of complex exponentials.  This becomes clear in the
synthesis equation where 

x (t )

is being expressed as a combination  of complex exponentials where the weightage of the
complex exponential 

e2π f t

is 

X ( f )

Therefore, 

X ( f )



is the weightage of the frequency 

f

within 

x (t )

Some properties of the Fourier transform that you will generally be familiar with are that
the  patterns  for  real  imaginary  even  odd  signals  is  something  which  is  common.

  For example, a real signal 

x (t )

has a conjugate even Fourier transform.  We will observe this in a minute.   Another
important aspect that will come in frequently in the context of digital communication  is
that time limited signals are band unlimited.  Band limited signals are time unlimited.  In
other words, if you compress a signal in the time domain, the frequency domain it goes
to  infinity.

  Similarly, if you have a signal which is limited in the frequency domain to a range of
frequencies   in  the  time  domain,  it  will  go  from  minus  infinity  to  infinity.   The
convolution is very special because when you convolve two signals in the time domain,
their Fourier transforms get multiplied.  This is a very commonly observed property that
is very useful when you design filters  and this will carry over in the context of digital
communication also.  Finally, Parseval's theorem states that the energy when measured in
the time domain  which is 

∫
−∞

∞

|x (t )|
2
dt

magnitude and the energy  measured in the frequency domain by integrating the mod
square of the Fourier transform are  the same.  Another way to interpret this in the context
of vectors is that if you change the basis  or the axis in which you represent a vector, that
doesn't  change  its  length.

  The same thing carries over in terms of interpretation for signals and that is how the
Parseval's  theorem can be interpreted.  As an example of the first property that we saw in
the previous slide, let us take a signal  which is real 

x (t )

If 



x (t )

is real, then we have a conjugate even 

X ( f )

What does that mean?  That means 

X ( f )=X (−f )

  Let us see if that is the case.  

x (t )

being real implies that

x (t )=x∗ ( t )

implies that if we now write the definition of the  Fourier transform of 

x (t )

we get 

X ( f )=∫
−∞

∞

x (t ) e− j2π f t dt

Let  us  now  take  the  conjugate  of  this  equation.   That  is  going  to  be  integral,  this
particular  integral  and  conjugate.

  Of course, 

t

is real.  The other two we will place conjugates on.  So, we will have 

x ∗
( t)e− j2πf t

the star of that.  Since 

x (t )

is real, we just write it as 

x (t )



and 

(e− j2π f t )
∗
=e j2π f t .

Now evidently this integral is the same as the integral above except that we have replaced

f

with 

−f

and therefore, we get 

X (−f )

over here.  Therefore, remember that whenever you have a real signal 

x (t ),

its Fourier transform  satisfies the so called conjugate event property that is 

X ∗
( f )=X (−f ) .

  Some common Fourier transform pairs that we will keep seeing again and again.  A
rectangular  signal  has  a  Fourier  transform  which  is  a  sinc.   A  Gaussian  signal  is
interesting because its Fourier transform will be Gaussian and in  fact if you choose to
express your Gaussian as 

e−πt 2 ,

then its Fourier  transform based on our definition can be easily shown to be 

e−π f 2 .

The impulse 

δ(t )

has a Fourier transform 1.  This indicates the fact that an impulse actually contains all
frequencies  in  equal  amounts.

  Similarly, 

e j 2π f 0 t



which is actually a complex sinusoid with frequency  

f 0

has the same or similar Fourier transform structure.  It is the dual of the previous result
that we had.  It is an impulse at 

f 0 .

This is also very natural.  A single frequency 

f 0

is just a complex exponential 

e j 2π f 0 t .

  The  key  ideas  where  we  will  be  seeing  Fourier  transform  are  for  designing  and
analyzing  signals that occupy specific bandwidths and in practice whenever we have
multiplexing  and multiple access signals, that is you want to put signals for different
people  in  different   frequency ranges,  use  of  the  Fourier  transform along with these
signals  comes in very handy.  If  you now take an example of a practical  use of the
Fourier transform, let us take  the case of a sinc and band limits.  If you look at sinc and
rect as we saw in the previous slide, they form a Fourier transform  pair.  That is, 

sinc(t )

has a Fourier transform which is 

rect (t)

or

rect ( f )

rather.  

rect ( f )

is  defined  as  being  1  between  minus  half  and  half.

  Therefore, because in the frequency domain it is limited in frequency, it is said to  be
band limited.  In other words, a sinc only has a restricted set of frequencies and naturally
in the time  domain you are aware that a sinc is non-zero for all, goes to non-zero values
for many  many values of 



t

and it does not die out till infinity.  If we now do something interesting and if we now
consider a combination of sincs, that  is, if we take the signal 

sinc(t )−0.5 sinc(t−1) ,

interestingly this  is also band limited because the sinc is band limited,

sinc(t−1)

is also band limited  and the linear combination is also band limited within the same
interval.  That is, if you look over here, this particular signal has the value 1 at 0 and
minus half  at the value 1.  This is because of the property of the sinc wherein it goes to 0
for all integer values  of 

t

except for 

t=0 .

  And how does this translate in the frequency domain?  The frequency domain, you can
see that it is still band limited except that because  of the fact that you have a combination
of sincs, there is some extra information encoded  in the Fourier transform.  This is a
common concept that we will be using again and again in order to encode information  in
digital communication over a band limited channel.  We will now look at a small detour
where we will evaluate this particular example on GNU  radio.  We will now take a brief
detour to perform a simulation of the sinc waveforms on GNU  radio.  To perform these
simulations,  we  will  be  introducing  three  new  GNU  radio  blocks.

  The first is the vector source that outputs a sequence of numbers at the sample rate 1
after  the  other.   It  is  useful  because  you  can  construct  arbitrary  waveforms  just  by
entering their sample values.  The next block is variables that allow you to reuse values
across the flow graph and  changing just this variable block will reflect the change across
the whole flow graph.   Finally,  we will  be introducing the  python import  block that
allows you to use python  modules  and code in  your flow graph.  Remember that  a
significant part of GNU radio is implemented in python and therefore the  full power of
python  is  available  to  you.

  For this course, you do not need knowledge of python.  Wherever needed, we will
clarify what minimal knowledge you need.  In this simulation, we will be using basic
numpy for constructing numerical  arrays and  accessing some common mathematical



functions.  Let us now start building our example in GNU radio.  For convenience, you
will  be  able  to  see  the  key  presses  at  the  bottom  left  like  this.

  Let  us first  begin with the vector  source.   To obtain a  vector  source,  we take our
conventional approach by pressing command F or control  F and typing vector and you
will see vector source under miscellaneous.  Let us drag and place it within our flow
graph.  The vector source by default has the values 0 0 0.  We would like to use it to
output a desired sequence of numbers repeatedly which is why  the repeat we will keep as
yes.  We can double click on the vector source, change the output type to float and we
will  change the vector which is by default 0,0,0 within

(1,2,3,4).

  The parentheses and the commas are important because that is what GNU radio uses to
identify  the separate set of values in the form of an array.  We then say ok.  Since ours is
a simulation, our next task will be to use a throttle which we will again  say control F or
command F and type throttle.  We take the throttle, place it in our flow graph, double
click on it  and convert  it  to  float and finally,  we will take a time sink.  Once again
control F or command F, we type time and we grab the qt gi time sink, place  it in our
flow  graph,  we  double  click  it,  we  change  the  complex  to  float.

  We then also add a grid by default.  We also set the auto scale to yes.  We then say ok
and we connect the vector source to the throttle and the throttle to the qt  gi time sink.
You can then save your work and then execute the flow graph.  Executing the flow graph
yields a waveform like this but to understand this better, we  will switch to the stem plot.
So  I  will  middle  click  and  choose  stem  plot  and  zoom  in  to  a  particular  region.

  You can clearly see that you have the sequence 1, 2, 3 and 4 followed by 1 again.
Therefore, the vector source keeps up yielding the sequence 1, 2, 3, 4 again and again
repeatedly.   If  you zoom in closer and find the time gap between any two sequence
elements, this stem  and this stem, for example this is at 13 milliseconds and this is at
about  13.

031  milliseconds.   This  gap  of  0.031  milliseconds  is  almost  exactly  equal  to  the
reciprocal of 32000 because our  sampling rate is 32000 samples per second and therefore
the gap between any two of these  stems is going to be 1 upon 32000.  We will now close
this.  The next block that we will see is the variable block.  To get a variable block, we
can  press  Ctrl  F  or  Command  F  and  type  variable.

  You will see variable under core variables.  We drag and place it in our flow graph.  By
double  clicking  this  variable,  we  can  change  the  variable  id  to  something  like  t



underscore vales because we will eventually be using this variable to indicate the time
values at which we will generate the sink.  Let us set the values to be within parentheses
3,  4,  6,  11.

  Some arbitrary set of 4 values.  We can press OK.  We will see at the bottom that a new
variable with id t vales has now been created and its  value is 3, 4, 6, 11.  It is now very
easy for us to make our vector source use the t vales variable.  How?  We can double
click the vector source and we just replace this vector with t vales.  We press OK.  We
can then execute our flow graph and in the stem plot, we will be able to see that  the
values  are  3,  4,  6,  and  11  and  they  keep  repeating.

  This indicates that the variable 

t_vals

is being used by the vector source in order to  output the samples.  Let us now close this
window and now move on to our task of creating the sink.  To put together our example
of a combination of sincs, we want to be able to produce the  waveform a1 times 

sinc(t )

plus a2 times 

sinc(t−1) ,

where t is measured in  milliseconds.  This corresponds to a sinc whose value at t equal to
0 will be a1 and t equal to 1 will  be a2.  Remember that the sampling rate that we are
using  is  32000  samples  per  second.

  To construct one of these sinks, we will use 1024 values of t.  Remember that we cannot
produce continuous time waveforms.  So, we must approximate them using finite discrete
sets of values.  So, we will restrict ourselves to 1024 values of t.  These 1024 values we
will choose as minus 512 upon 32, minus 511 upon 32 and so on in  our GNU radio
example going through 511 upon 32.  What justifies this choice?  If you remember in
GNU  radio,  we  are  using  32000  samples  per  second.

  Therefore substituting t as minus 512 upon 32 and so on yields 1024 values of t which
are exactly 32 milliseconds long.  Why is that the case?  This is because 1024 divided by
32000 seconds  is  exactly  32 milliseconds.   Therefore,  we will  have  a  sink  which  is
truncated to 32 milliseconds duration approximately.  The second thing is that the gap
between any two samples is exactly 1 upon 32000 seconds  and exactly 32 samples later
you  will  get  the  next  integer.



  This will become adequately clear when we build this in GNU radio.  Our first course of
action is to import numpy that allows us to access numpy's numeric functions  within
GNU radio.  So, let us hit Ctrl F or Cmd F and type import.  We drag the import block
into our flow graph.  We now double click the import block and we will now use this
block  to  import  the  numpy   python  module  by  typing  import  numpy.

  After that we can say ok.  The first thing that we will do is to construct the values of t
that we wanted which is minus  512 upon 32 through 511 upon 32 step by 1 upon 32.  An
easy way to do this would be let us modify this t vals and we will modify this to numpy
dot a range which gives us a numpy array consisting of a range of values from minus 512
to 511  through 512 divided by 32.  What does this do?  Numpy dot a range minus 512 to
512 gives me all integers ranging from minus 512 through  511.  An important point is
that 512 the last number is not included and divide by 32 divides each  of these by 32.

  Let us say ok.  You will now see that t vals takes the values minus 16 minus 15.96
minus  15.93  and  so  on   through  15.

96875.  These are the locations where we are going to evaluate our sync.  In our vector
source, let us change this to evaluate a sync.  How do we do that?  We change the vector
to numpy dot sync of t_vals.  This essentially causes GNU radio to call the sync function
on  t_vals  and  replace  those   values  as  the  source  for  this  vector.

  Let us say ok.  Let us now execute our flow graph.  What we obtain is a very nice sync.
This sync has a peak at  around 16 milliseconds at  1 which makes sense because we
truncated  our sync to 32 milliseconds and therefore, at exactly the halfway mark you will
have  the peak.  At the next millisecond which is 17 milliseconds, you will find that the
sync goes to 0.  At 18 milliseconds the sync goes to 0 and so on.  This is an elegant way
to construct a sync and in spite of the sync being truncated,  it is very evident that the
sync  characteristic  is  largely  preserved.

  If you want a more accurate sinc, you can keep increasing the number of samples from
1024 to larger values.  However, this would increase the complexity of the simulation.
Let us now close this.  Our next task will be to make this sync a variable amplitude sync.
To do so, let us first introduce a QT range by typing control F or command F and range.

  We will drag the QT GUI range over here.  Let us double click on this range, change the
id to a1, make the default value 1.  We will make it start at around minus 2, stop at 2 and
make the step 0.1.  And we will now double click our vector source and make this a1
times  numpy  dot  sinc.

  Let us now execute this.  You will now see a range on the top that allows you to alter



the  amplitude.   Let  us  reduce  the  amplitude  a  little.

  At minus 0.2, you can see that it goes negative.  If you make it 1.4, you can see that it
goes positive.  The reason why the sync gets offset is because whenever you change the
value of a1 using  the range, the whole vector source is reevaluated and therefore, the
synchronization  may  not   be  preserved.   To  avoid  this,  you  must  perform  the
multiplication outside, but for simplicity, we will retain  this structure.  Let us now close
this and let us now add a frequency sink to observe the frequencies  characteristic of this
sync.   We  press  control  F  or  command  F  and  type  freq  and  we  grab  the  QT GUI
frequency  sink  into  our  flow  graph.

  Let us change some characteristics for convenience.  We can double click.  We will first
change the type to float, window type to rectangular.  We will add a grid and we will set
the auto scale to yes.  We can say ok.  We can now connect our source to the sink and if
you now execute the flow graph, you  will see that there is a very nice rectangle like
shape  showing  the  sinc.

  There are these minor oscillations.   This is  because of the Gibbs phenomenon that
occurs due to the fact that you have truncated  the sinc.  This effect can become less
pronounced, but will never go away because the moment you  truncate the sync, you will
never get a perfect  rectangle.   The next  course of action for us is  to add the second
source.  Let us just copy this source by selecting it and hitting control C and control V or
command C and command V if you are using Mac.  An alternate approach, let me redo
this, would be to select this source, going edit, copy  and then just saying edit, paste and
that  will  also  give  you  the  source.

  Now we want to change this vector source to yield A2 times 

sinc(t−1) .

So, we change the appropriate parameters by double clicking on this vector source and
saying ok.  This becomes red because the range A2 is not specified.  Let us easily just
take this range and duplicate it by pressing control C or command C and  control V or
command V and changing the name to A2.  Let us also change the default value to minus
0.5 since this will make it consistent with  the example that we just saw in our lecture.
We will say ok.  We will then now change the GUI time sink and frequency sink to
display all our signals.  Let us double click the QT GUI time sink to display for three
inputs, the frequency sink  to display for three inputs.  Let us connect this vector source
to the time sink input 2, this vector source to the frequency  sink input 2 and finally, the
sum of these two to the third input.  To add these two, we will use the add block that we
can  use  by,  we  can  access  by  pressing   control  F  and  typing  add.



  We can drag the add block over here.  As always we double click it and make it float
and say ok.  We connect the vector source over here.  We connect this vector source to
the second input.  We connect these outputs to the third input of the time sink and the
frequency  sink.

  Let us now run this flow graph.  If you run this flow graph, you will see something
interesting.   The blue curve is the original sinc which is at 16 milliseconds.  The red
curve is the second sinc whose peak amplitude is minus half.  It is exactly 1 millisecond
delayed  from  the  blue  sinc.

  If you observe this sum which is the green one, that has the value of minus 0.5 at 17
milliseconds.  It has the value of 1 at 16 milliseconds which means it is exactly of the
form 

sinc(t )−0.5 sinc(t−1)

and it displays the other sinc like characteristics that is  it goes to 0 at integer millisecond
values.   In  the  spectrum  you  see  something  interesting.

  The red one which is the 

−0.5 sinc(t−1)

looks rectangular in shape.  The blue one which is 

sinc(t )

looks rectangular in shape.  But the green one does not look rectangular in shape because
it is a combination of a  sinc and delayed sinc with a different amplitude.  Therefore,
unlike a regular sinc, it has some additional information embedded in it  indicating these
amplitudes  of  1  and  minus  0.5.   This  concept  will  be  used  heavily  in  digital
communication  to  construct  band limited  waveforms  that  convey useful  information
across  time.

  Now we can start playing with the amplitudes.  If you now change A1, you will see that
A1's amplitude changes.  If you now change A2, A2's amplitude changes.  And you will
see that in spite of all these amplitude changes, the resulting summation  is still band
limited to be between 

-0.5 KHz and 0.5 KHz



because we  chose a sinc which is sinc of t upon t which is capital T is 1 millisecond.
Therefore all the waveforms and their combinations are bound within

-0.5 KHz and 0.5 KHz.

Of  course,  it  is  not  a  brick  wall,  you  have  this  kind  of  decay.

  This can be attributed to the fact that we are truncating the sinc.  Therefore, this example
clearly demonstrates that you can construct waveforms that are  band limited yet can
convey useful information across time.  Thank you.


