
Digital Communication using GNU Radio

Prof. Kumar Appaiah

Department of Electrical Engineering

Indian Institute of Technology Bombay

Week-08

Lecture-36

Maximum Likelihood Delay Estimate for a Single Symbol in GNU Radio

Welcome to this lecture on Digital Communication using GNU Radio. My name is Kumar

Appiah from the Department of Electrical Engineering at IIT Bombay. In this session, we

will explore an initial example of how to estimate delay.

(Refer Slide Time: 01:19)

Recall from our class discussions that estimating the delay of a signal s(t) involves

maximizing the absolute value of the convolution of the received signal with the matched

filter. We will use a simple template function or a set of straightforward template functions

to illustrate how the peak of this convolution can provide an accurate estimate of the delay.

To validate this approach, we will perform tests with random delays and ensure that our

estimates consistently align with the maximum likelihood estimation approach we have

studied.

(Refer Slide Time: 01:49)

Our focus in this lecture will be on Delay Estimation, specifically the Maximum Likelihood

Delay Estimation method. As covered in class, by overlapping s(t) with the template

function and varying parameters such as τ, a, and θ, we can demonstrate that the final

solution involves maximizing the magnitude of y convolved with the matched filter and

finding the value of τ that maximizes this modulus. To start, we will construct a simple

example and set the sampling rate to 192,000.

Now, let’s start by creating a simple pulse and examining how delay affects it. We’ll begin

by setting up our flow graph. I’ll first add a vector source to the graph. To do this, I’ll press

`Ctrl + F` or `Command + F`, type "vect", and select the vector source. Next, I’ll place it

on the flow graph.

We need to configure the vector source with a specific filter. For our example, we want the

vector source to generate about 1,000 samples. So, we’ll create a variable to hold our filter

data. I’ll name this variable `my_pulse` and set its length to 1,000. We’ll initialize

`my_pulse` with a list of 0s and ensure its length is 1,000. We achieve this by setting

`my_pulse` to `[0] * (1000 - len(my_pulse))`.

The reason for this is that ̀ my_pulse` will represent the pulse s(t), and we’ll use it to search

for delays in our example. To populate `my_pulse`, I’ll create a new variable. Press `Ctrl

+ F` or `Command + F`, search for "variable", select it, and name it `my_pulse`. Initially,

we’ll set this variable to 100 ones, so the command will be `[1] * 100`, followed by 900

zeros. This setup is ideal because we can use it for match filtering.

Finally, let’s add a throttle to the flow graph. Before doing so, convert the data type of our

pulse to float, as complex numbers are unnecessary for this step. To add the throttle, press

`Ctrl + F`, search for "throttle", and add it to the graph.

(Refer Slide Time: 06:25)

We start by adding the throttle to our flow graph, ensuring it’s set to float. This throttle

controls the data rate of our signal. The pulse we are working with is the template pulse

that will be convolved with the matched filter at the receiver. To create the matched filter,

we simply reverse the pulse. Even though the pulse is symmetric, it’s good practice to

reverse it explicitly. To do this, press ̀ Ctrl + F` or ̀ Command + F`, search for "decimating

FIR filter," select it, and set it to float with real taps. Connect this filter and configure the

taps to use `my_pulse`, applying a reversal with `[::-1]` to ensure it's reversed, despite its

symmetry.

Next, add a QT GUI Time Sink to visualize the results. Press `Ctrl + F` or `Command +

F`, search for "time," and select the QT GUI Time Sink. Double-click it to make it float,

and then connect it to your flow graph. We need to set the number of points for this time

sink. Since we have a 1,000-sample pulse and a 100-sample signal, the ideal length for the

time sink should be around 1,100 points. Although 1,099 points would be precise, setting

it to 1,100 provides a cleaner, static display.

(Refer Slide Time: 07:01)

Run the flow graph. If the display seems to shift, it might be due to an incorrect length

setting. Given a 1,000-sample pulse followed by 100 samples, 1,000 points should be

accurate. Adjusting to 1,000 should resolve any shifting issues. When you execute the flow

graph, you should observe a clear shape, with the peak ideally at 0.514 milliseconds.

To verify, let’s perform a quick calculation. For 0.514 milliseconds, using a sample rate of

192,000 samples per second, we calculate 0.514 ms × 192,000 samples/second, which

equals approximately 99 samples. This corresponds to the 100th sample, consistent with

the length of the filter being 100.

(Refer Slide Time: 10:24)

If you introduce any additional delay, the shift in the peak’s position will indicate the

amount of delay, providing an accurate measurement of the sampling point. To illustrate

this, let’s add a random delay between the signal and the decimating FIR filter to observe

how the peak shift reflects the delay. For now, I'll remove this element.

I’m going to press `Ctrl + F` (or `Command + F` on a Mac) and search for "delay" to add

the delay element to our flow graph. We’ll configure it to be a float and name this delay

variable `random_delay`. To generate this delay randomly, I'll press `Ctrl + F` (or

`Command + F`), search for "variable," and drag the variable element into the graph.

Double-click it to rename it to `random_delay`.

Next, we’ll use NumPy to create a random delay. For this, I’ll enter

`np.random.randint(0, 50)` to generate a random integer between 0 and 49. Remember

to import NumPy by pressing ̀ Ctrl + F` (or ̀ Command + F`) and adding the import block:

`import numpy as np`.

Now we’re all set. Every time you run this flow graph, a new random delay will be

generated. Running the flow graph repeatedly will yield different random delays each time.

To confirm our results, let’s add a way to view this delay. Press `Ctrl + F` (or `Command

+ F`) and search for "qt GUI number sync." This element will display a number

representing our delay. Set the number sync to a short type, with inputs ranging from 0 to

50.

Next, add a "constant source" by pressing `Ctrl + F` (or `Command + F`) and searching

for "constant source." Ensure it’s of type short and set it to represent our `random_delay`.

(Refer Slide Time: 11:06)

Execute the flow graph, and you should see that the random delay is, for example, 17. To

verify this, note the time at which the peak occurs, which might be 0.604 milliseconds.

Converting this to seconds (0.604 / 1000) and multiplying by the sample rate (192,000)

gives 116. This corresponds to about 117 samples of delay. When you take this delay

modulo 50, it matches the random delay of 17 samples we observed. This confirms that

our delay calculation is correct.

(Refer Slide Time: 12:00)

Let’s run the experiment one more time. This time, instead of focusing on the details below,

I’ll just observe the peak value. For instance, if the peak value is 0.6927 milliseconds, then

converting this to samples, we get:

0.6927 ms
1000

× 192,000 ≈ 133 samples

So, for this case, the modulo operation should yield 34. This confirms that our approach is

correct.

However, a crucial point to note is that we should take the absolute value of the delay

before performing any modulo operation. I had initially overlooked this step, so let me

correct it by adding the absolute value function.

To do this, press `Ctrl + F` (or `Command + F`), search for "abs," and select the absolute

value function. Connect this function to the relevant part of the flow graph.

Next, I’ll modify the filter. Instead of using the current setup, let’s switch to a ramp function

by using `np.arange` to generate an array from -50 to 50, maintaining a length of 100. To

handle the list appropriately, let’s ensure it’s treated as a list.

(Refer Slide Time: 12:29)

Let’s consider the peak value, which is 0.6767 milliseconds. Converting this to samples:

0.6767 ms
1000

× 192,000 ≈ 130 samples

So, the expected result should be 131, and 131 mod 50 yields 31. This confirms that our

method is accurate.

(Refer Slide Time: 13:20)

The approach discussed in the slides proves effective for estimating delays, but it's

important to see how it performs in practical scenarios, especially with interpolation and

pulse shapes closer to a root-raised cosine filter.

In this lecture, we’ve used GNU Radio to simulate the effect of a delay and applied the

Maximum Likelihood (ML) delay estimation technique to appropriately characterize this

delay.

A limitation of our current method is that it uses a single pulse, which aligns with our

classroom example. However, practical applications often involve more complex signals

with multiple data sequences. In the next lecture, we will integrate these aspects into a

simulation to evaluate its effectiveness and determine any necessary adjustments for such

scenarios. Thank you.

