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Welcome to this lecture on Digital Communication Using GNU Radio. I am Kumar Appiah 

from the Department of Electrical Engineering at IIT Bombay. In this session, which is the 

third in our series, we will continue relaxing the assumption that all receiver parameters 

are known. Specifically, we’ll delve into synchronization and parameter estimation, 

focusing on how to estimate the delay, amplitude, phase, and frequency at the receiver. 
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In our previous lecture, we touched upon the phase-locked loop (PLL). To quickly recap, 

a PLL is a feedback-based structure designed to track phase differences between two 



frequencies. When these phases are tracked, the phase difference can be leveraged to adjust 

the voltage-controlled oscillator (VCO) so that it matches the carrier present in the received 

signal. 

One important point I mentioned earlier is that the PLL functions exceptionally well with 

a pure carrier, meaning an unmodulated carrier signal. This is true even in the presence of 

Gaussian noise. However, when the carrier has a signal modulated onto it, extra care must 

be taken. In such cases, you might need to explore alternative methods to retrieve the local 

oscillator that matches the transmitter’s carrier. 
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Next, we will discuss the maximum likelihood interpretation of the phase-locked loop. 

Imagine we consider an observation interval of length t0, ensuring it’s long enough to 

capture the variations of the carrier. During this interval, your received signal y(t) can be 

represented as 𝑒𝑒𝑗𝑗θ × 𝑛𝑛(𝑡𝑡).  

Now, let's consider the phase variation, which I've been implicitly ignoring. Assume that 

𝑒𝑒𝑗𝑗θ(𝑡𝑡) represents this variation, where the phase θ(t) is not constant but varies with time. 



As you're aware, the variation of phase is directly related to frequency, if you differentiate 

the phase θ(t), you obtain the angular frequency ω. Therefore, θ(t) is not just a static value 

but a time-varying quantity, and we need to determine the frequency offset that causes this 

variation. 

The likelihood function L(y|θ) can be expressed as exp � 1
σ2

Re �𝑦𝑦𝑒𝑒𝑗𝑗𝑗𝑗(𝑡𝑡) − 𝑡𝑡0
2
��. Here's how 

this comes about: if you integrate the noise n(t) over an interval [0, t0], it becomes a random 

variable with a variance proportional to t0. When you consider this, t0 is just an auxiliary 

parameter, not critical to our main concern. We need to focus on maximizing the expression 

∫ −𝑡𝑡0
0 𝑦𝑦𝑐𝑐(𝑡𝑡). 
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To break it down further, if we represent y(t) as yc(t) + jys(t), this expression becomes 

−∫ [𝑦𝑦𝑐𝑐(𝑡𝑡) cos𝜃𝜃 (𝑡𝑡) + 𝑦𝑦𝑠𝑠(𝑡𝑡) sin𝜃𝜃 (𝑡𝑡)]𝑡𝑡0
0  𝑑𝑑𝑑𝑑. Essentially, this involves multiplying by cos 

θ(t) + j sin θ(t) and taking the real part. Notice that in this integral, terms like yc(t) cos θ(t) 

appear, and our goal is to maximize this to accurately track the phase over time. The 



challenge here, compared to standard phase tracking, is that θ(t) is varying during the 

interval, requiring us to match this varying phase as precisely as possible. 

To achieve this, I’ve rewritten the expression for clarity. If we apply the method of steepest 

ascent to maximize this function, why steepest ascent, you might ask? Whenever you want 

to maximize a function, you compute its derivative and move in the direction of the 

derivative to reach the peak. Imagine a function shaped like a hill; you find the slope 

(derivative) and move upwards in that direction until you reach the peak, where the 

derivative equals zero. This is the approach we'll use to match the varying phase θ(t) over 

time. 

So, this is why we refer to this process as steepest ascent. Essentially, what we're doing is 

differentiating the function J(θ), but there's a subtle trick involved here. When you 

differentiate J(θ), you obtain the derivatives of Yc and Ys. However, in this context, we're 

not focusing on the derivatives of Yc and Ys themselves because we're assuming that they 

vary slowly. This assumption is crucial because it implies that the frequency the phase-

locked loop (PLL) is tracking is much more significant than any variation in Yc and Ys. 

Therefore, we only perform the differentiation with respect to these terms. Upon 

differentiation, you get -Yc sin(θ) + Ys cos(θ), which is proportional to 2πΔf. A common 

question is how this result corresponds to 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

. Well, when you differentiate J(θ), you apply 

the chain rule, resulting in 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

× 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

. By isolating 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

, this is essentially what you obtain. You 

can explore the details further, but for now, I'll move on since we've spent quite some time 

on this topic. 

If you examine this closely, it resembles the process we discussed earlier, where we mixed 

a cosine signal with a negative sine. The similarity lies in how this approach leads you to 

the expression 2πΔf. Now, think of an integral as a low-pass filter. Recall that we 

performed an integration with respect to t0. Here, this integral acts as a low-pass filter. With 

the help of feedback, the voltage-controlled oscillator (VCO) corrects for the 2πΔf, which 

is the frequency deviation, thereby forming a phase-locked loop. 

The loop filter and the entire mechanism we've described are, in essence, performing an 



averaging or integration process, which then adjusts the VCO to yield the correct output 

frequency. This system simultaneously tracks both the frequency and the phase.  

Intuitively, a PLL aims to track the phase. However, since it continuously tracks the phase 

over time, the phase variation over time corresponds directly to the frequency offset. This 

is the key insight for understanding how a PLL operates, even from a maximum likelihood 

perspective. We initially set up J(θ) as an optimization metric, and maximizing it translates 

to optimal frequency tracking. This concept can be explored further in specialized 

references.  

In fact, the design of PLLs is a well-researched area, and there's a wealth of circuit-related 

literature available that covers efficient implementations of PLLs under various constraints 

and modulation formats. For those interested, these references provide a deep dive into the 

topic. 
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In our exploration of GNU Radio, we will delve into certain aspects of Phase-Locked 

Loops (PLLs), including simulations to evaluate their performance under noisy conditions. 



As a brief aside, there's something known as Costas Loop, which is particularly used for 

Phase Shift Keying (PSK). Costas Loop is designed specifically to handle PSK, allowing 

us to perform symbol sampling while simultaneously tracking frequency offset by 

monitoring the phase offset. 

Let me illustrate this with a practical scenario. Suppose you are transmitting PSK symbols, 

and let’s consider the case of Quadrature Phase Shift Keying (QPSK). Ideally, you'd expect 

your QPSK symbols to be received accurately. However, due to the inevitable frequency 

offset, which manifests as a phase offset, what actually happens at the receiver is a 

continuous rotation of these symbols. 

Now, why does this rotation occur? As we’ve previously discussed, when there’s a phase 

offset, your signal is multiplied by 𝑒𝑒𝑗𝑗𝑗𝑗. If this phase offset changes over time, you then 

have 𝑒𝑒𝑗𝑗𝑗𝑗(𝑡𝑡), which introduces a dynamic, time-varying phase shift to your PSK symbols. 

This rotation can severely degrade the performance of your system, as it causes the received 

symbols to deviate from their expected positions. 

So, how do we counteract this problem? We can employ a clever technique. Consider 

QPSK again, where you take 𝑒𝑒𝑗𝑗
𝜋𝜋
4, which represents one of the QPSK symbols. When you 

raise this to the power of 4, �𝑒𝑒𝑗𝑗
𝜋𝜋
4�

4
, you obtain 𝑒𝑒𝑗𝑗𝑗𝑗, which is equivalent to -1. Similarly, 

for the other QPSK symbols like 𝑒𝑒𝑗𝑗
3𝜋𝜋
4 , 𝑒𝑒𝑗𝑗

5𝜋𝜋
4 , and 𝑒𝑒𝑗𝑗

7𝜋𝜋
4 , they also map to -1. 

This observation leads us to a useful trick. Let's denote the received symbols as follows: 

• y0 = b0 (assuming no noise for simplicity), 

• 𝑦𝑦1 = 𝑏𝑏1𝑒𝑒𝑗𝑗2𝜋𝜋𝜋𝜋𝜋𝜋⋅𝑡𝑡, where Δf is the frequency offset and t is the duration of a symbol, 

• 𝑦𝑦2 = 𝑏𝑏2𝑒𝑒𝑗𝑗2𝜋𝜋2𝛥𝛥𝛥𝛥⋅𝑡𝑡, and so on. 

The challenge, however, is that we don’t know the exact values of b0, b1, and b2, though 

we do know that they are QPSK symbols. Despite this uncertainty, we can still leverage 

the periodic properties of QPSK symbols to mitigate the impact of the frequency offset. 

Let's explore the trick we're about to apply. When you take the fourth power of y0, it results 



in -1. Why? Because y0 is one of the four QPSK symbols, and raising any of these symbols 

to the fourth power yields -1. Similarly, raising y1 to the fourth power gives you b14, which 

equals -1, and this result becomes −𝑒𝑒𝑗𝑗8𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋. For 𝑦𝑦24, it becomes −𝑒𝑒𝑗𝑗16𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋. 
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Now, let’s analyze this further. If you multiply 𝑦𝑦14 by the conjugate of 𝑦𝑦04, what do you 

obtain? You get 𝑒𝑒𝑗𝑗8𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋. Likewise, if you multiply 𝑦𝑦24 by the conjugate of y14, the result is 

again 𝑒𝑒𝑗𝑗8𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋 . Notice how consistent this is. At the receiver, if you know the symbol 

duration (which we’ll assume you’ve already determined), you can extract the frequency 

offset by taking the argument of this result. Specifically, the argument is 8π Δf T, and when 

you divide by 8π T, you’re left with the frequency offset Δf. 

In the presence of noise, you simply take a larger number of these symbols, compute their 

arguments, and average out the noise to effectively determine the frequency offset. This 

method is highly versatile, working seamlessly for various PSK constellations, whether it’s 

BPSK, QPSK, 8-PSK, or 16-PSK, as long as the constellation points are equi-spaced and 

lie on a circle.  



This technique also extends to other QPSK variants. For instance, if you use a QPSK 

constellation rotated by π/4, where the points are 1, -1, j, and -j, raising these to the fourth 

power yields 1 instead of -1. Thus, the technique remains effective for this rotated version 

as well. 
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The Costas Loop, in particular, allows for very straightforward tracking of the frequency 

offset in PSK constellations. By raising the symbols to the fourth power and tracking their 

movement, you can accurately determine the frequency offset. However, it's important to 

note that while the Costas Loop is intuitive and easy to implement, it may falter in the 

presence of other impairments, such as channel effects. 

Let's consider a scenario where your symbols, unfortunately, get convolved with some 

channel or experience other distortions. In such cases, adjustments are necessary for the 

Costas loop to function effectively. For instance, when facing the challenge of jointly 

estimating parameters like delay, amplitude, frequency offset, phase, and even the channel 

itself, the Costas loop might not be the most effective solution. A more traditional 



approach, such as a phase-locked loop (PLL), can be easier to implement because it allows 

for more straightforward extraction of these frequency components. While the Costas loop 

is a powerful conceptual tool, especially in understanding how the PSK constellation 

behaves in the presence of frequency offsets, it may require more complex adjustments 

when additional impairments are present. You'll explore the application of the Costas loop 

through simulations in GNU Radio, where its practical strengths and limitations will 

become clear. 
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Now, let's transition to a related topic: differential modulation. I'll start by providing some 

context. So far, we've discussed how system parameters like phase and frequency can vary 

over time, leading to differences between the transmitter and receiver. Typically, these 

differences require calibration, such as through a phase-locked loop, to keep the system 

aligned. However, frequent recalibration introduces overhead. But what if we could take 

advantage of the fact that these system parameters change only slowly? Could we encode 

information in the difference between successive symbols, rather than continuously 

recalibrating? This is where differential phase shift keying (DPSK) comes into play. 
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DPSK is a form of non-coherent communication, meaning that it doesn't rely on traditional 

carrier recovery methods. Instead, it exploits the fact that the carrier at the receiver is 

nominally close to that at the transmitter, allowing for communication without precise 

synchronization. How does this work? Imagine you're using QPSK, but there's a frequency 

offset. In differential PSK, instead of decoding the absolute phase of each symbol, you 

focus on the phase difference between successive symbols. This approach allows the 

system to handle frequency offsets more gracefully, as it relies on relative phase changes 

rather than absolute values. 

The frequency offset results in a rotation of the constellation points. For example, if you 

transmit the symbol 1 + 1j, it will be slightly shifted, moving along the circle but away 

from its original position. This shift makes the system less robust to noise because the 

constellation's movement exacerbates the impact of noise. The traditional solution is to use 

a phase-locked loop (PLL) or some other method to estimate the carrier frequency. 

However, suppose we aim to avoid carrier estimation altogether and rely on the fact that 

the offset doesn't change significantly. In that case, we can apply a similar strategy as we 



discussed with the Costas loop. 
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Here’s what we can do: instead of encoding information in the constellation points 

themselves, we can encode it in the phase difference between successive points. Let me 

explain what I mean by phase difference. Assume b0 is our reference point, always 

represented as 𝑒𝑒𝑗𝑗𝑗𝑗/4. Recall the mapping 00, 01, 10, 11 that we discussed earlier with Gray 

coding, which helps minimize bit errors in the presence of symbol errors. This mapping 

could correspond to points like 𝑒𝑒𝑗𝑗𝑗𝑗/4, 𝑒𝑒𝑗𝑗3𝜋𝜋/4, 𝑒𝑒𝑗𝑗7𝜋𝜋/4, and 𝑒𝑒𝑗𝑗5𝜋𝜋/4.  

Now, consider that for b1, we write it as 𝑚𝑚1 × 𝑏𝑏0, where m1 is the symbol we want to 

transmit, belonging to a set of possible symbols m1, m2, and so on. Similarly, b2 is encoded 

as 𝑚𝑚2 × 𝑏𝑏1. This means we are always encoding the information in the phase difference. 

Following this logic, b3 would be 𝑚𝑚3 × 𝑏𝑏2. 

Let's apply this to the scenario we discussed earlier. Suppose y0 = b0 and 𝑦𝑦1 = 𝑏𝑏1𝑒𝑒𝑗𝑗2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋, 

where the phase shift 𝑒𝑒𝑗𝑗2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋 is caused by the frequency offset. Although this phase shift 

is a problem, the way we've encoded the information, in the phase difference, allows us to 



manage it.  
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Now, if we take the conjugate of y0 and multiply it by y1, we get: 

𝑦𝑦0∗𝑦𝑦1 = 𝑏𝑏0∗ × �𝑚𝑚1 × 𝑏𝑏0 × 𝑒𝑒𝑗𝑗2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋� = 𝑚𝑚1 × 𝑒𝑒𝑗𝑗2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋 

If the product 𝛥𝛥𝛥𝛥 × 𝑡𝑡 is small, then 𝑒𝑒𝑗𝑗2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋 is approximately equal to 1. This means the 

phase shift introduced by the frequency offset is minimal, and you can recover your symbol 

m1 directly. This approach effectively mitigates the impact of frequency offsets without 

needing carrier recovery, making it a powerful method in scenarios where the offset is 

relatively small. 

Let's work through another example. Assume y2 is given by 𝑏𝑏2𝑒𝑒𝑗𝑗2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋, with the assumption 

that the frequency offset Δf is constant. We want to evaluate 𝑦𝑦1∗𝑦𝑦2, which can be computed 

as follows: 

𝑦𝑦1∗𝑦𝑦2 = �𝑏𝑏1∗𝑒𝑒𝑗𝑗2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋��𝑏𝑏2𝑒𝑒𝑗𝑗2𝜋𝜋2𝛥𝛥𝛥𝛥𝛥𝛥� 



(Refer Slide Time: 25:53) 

 

This simplifies to: 

𝑦𝑦1∗𝑦𝑦2 = 𝑏𝑏1∗𝑏𝑏2𝑒𝑒𝑗𝑗2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝑒𝑒𝑗𝑗2𝜋𝜋2𝛥𝛥𝛥𝛥𝛥𝛥 = 𝑏𝑏1∗𝑏𝑏2𝑒𝑒𝑗𝑗2𝜋𝜋3𝛥𝛥𝛥𝛥𝛥𝛥 

Notice that 𝑏𝑏1∗𝑏𝑏2 represents the product of the complex conjugate of b1 and b2. For PSK 

constellations, this product essentially equals m2, so: 

𝑦𝑦1∗𝑦𝑦2 = 𝑚𝑚2𝑒𝑒𝑗𝑗2𝜋𝜋3𝛥𝛥𝛥𝛥𝛥𝛥 

Here, 𝑏𝑏1∗𝑏𝑏2 simplifies to m2, as these are PSK symbols. The term 𝑒𝑒𝑗𝑗2𝜋𝜋3𝛥𝛥𝛥𝛥𝛥𝛥 represents the 

phase shift introduced by the frequency offset. 

The core idea here is to encode information in the phase differences between symbols. By 

analyzing these phase shifts, you can extract the information from the constellation. For 

instance, if you consider phase jumps of π/2, you can account for the phase differences 

more effectively.  

In practical terms, if you use differential modulation with jumps of π/4, the phase 



transitions will encode the information. For example: 

• The symbol 00 might correspond to 𝑒𝑒𝑗𝑗0 (no phase jump). 

• The symbol 01 might correspond to 𝑒𝑒𝑗𝑗𝑗𝑗/2 (a π/2 phase jump). 

• The symbol 11 could be 𝑒𝑒𝑗𝑗𝑗𝑗 (a π phase jump). 

• The symbol 10 might be 𝑒𝑒−𝑗𝑗𝑗𝑗/2 (a -π/2 phase jump). 

By focusing on these phase transitions, you effectively ignore the impact of the frequency 

offset, provided that Δf t remains small. Thus, differential phase shift keying (DPSK) 

allows you to encode information in the differences between symbols rather than their 

absolute phases, making the system more resilient to frequency offsets. 
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Let's discuss some of the potential pitfalls of this approach. One major issue arises when 

the frequency offset is significantly large. For instance, if your constellation point is ideally 

positioned, but the frequency offset shifts it considerably, you encounter a problem. In this 

case, your approach of encoding information based on phase differences might lead you 

astray. If the frequency offset causes your signal to move far from its intended position, 



you will need to correct for this shift, which becomes challenging, especially in the 

presence of noise. 

When the frequency offset is substantial and combined with high noise levels, the 

differential approach can struggle. Because this method does not accurately estimate the 

carrier phase but rather attempts to track it, it tends to be less robust against noise. 

Differential phase shift keying (DPSK), for example, has poorer signal-to-noise ratio 

(SNR) properties compared to other modulation schemes. You end up with a higher bit 

error rate or symbol error rate for the same SNR when using DPSK. 

To formalize this, in differential QPSK, we arbitrarily choose b0 as 𝑒𝑒𝑗𝑗𝑗𝑗/4  and bn as 

𝑒𝑒𝑗𝑗(𝜑𝜑𝑛𝑛+𝜑𝜑𝑛𝑛−1), where φn represents possible phase shifts (0, π/2, π, or 3π/2). The process 

involves calculating the argument of the ratio of the received signal and its previous 

symbol, which gives you the phase information. This approach is relatively robust against 

small frequency offsets but suffers from a higher penalty in noisy environments. 

In summary, our lectures have highlighted the importance of accurate parameter estimation 

at the receiver. For example, in QPSK or 16-QAM, precise amplitude estimation is crucial 

for correct decision regions. Similarly, accurately determining the sampling location 

requires estimating the symbol start delay. Additionally, getting the phase and frequency 

offset right is essential for optimal performance. There are several approaches for handling 

frequency and phase offsets, such as the phase-locked loop (PLL) and the Costas loop. 

These methods have been tested and refined over the years to suit different scenarios. 

One strategy is to forego precise frequency or phase offset estimation and instead transmit 

signals differentially across the phase. This approach works well when dealing with small 

frequency offsets. However, it struggles with large frequency offsets and significant noise. 

In such cases, differential modulation is less effective. Generally, coherent or carrier-based 

receivers, which rely on local oscillators, offer better signal-to-noise ratio (SNR) to bit rate 

performance compared to differential modulation. In the upcoming lectures, we will 

explore these impairments using GNU Radio and then move on to examine the next major 

issue: channel modeling. Thank you. 


