
Digital Communication using GNU Radio 

Prof. Kumar Appaiah 

Department of Electrical Engineering 

Indian Institute of Technology Bombay 

Week-07 

Lecture-34 

Parameter Estimation for Practical Receivers - Part 2 

Hello, and welcome to this lecture on Digital Communication Using GNU Radio. I’m 

Kumar Appiah, and in this session, we will continue our exploration of synchronization, 

parameter estimation, and non-coherent communication, topics we began discussing in the 

previous lecture. 

(Refer Slide Time: 01:00) 

 

To recap, in our last session, we focused on parameter estimation, specifically dealing with 

the unknown amplitude of a transmitted signal. We discussed the approach of using known 



symbols, by employing a training mode, to achieve an estimate of the parameter a. This 

involved methods like weighted averaging based on the symbols sent.  

For scenarios where we don't have prior knowledge of the symbols, known as the blind 

estimation approach, the maximum likelihood estimation (MLE) method involves taking 

soft estimates. This means we collect received values and weigh them according to their 

reliability to derive an optimal estimate of the amplitude. Today, we will build upon these 

concepts and delve deeper into our discussion. 

(Refer Slide Time: 02:57) 

 

To address our problem, we will use the concept of the likelihood function. As we have 

previously discussed, the likelihood function helps us determine whether a particular signal 

was transmitted under the conditions of Additive White Gaussian Noise (AWGN). 

Specifically, we want to answer the question: Was the signal S(t) transmitted, or was it just 

zero? This problem is akin to binary signaling, where we previously focused on detecting 

symbols. However, in this case, we need to determine whether a specific signal S(t) was 

sent or not. We will use the hypothesis testing framework we applied in symbol detection. 



(Refer Slide Time: 04:31) 

 

Let's define our hypotheses: 

• Hypothesis HS: y(t) = S(t) + n(t), meaning the signal S(t) was transmitted, and n(t) 

represents the noise. 

• Hypothesis HN: y(t) = n(t), meaning no signal was transmitted, and only noise is 

received. 

In the absence of noise, determining whether S(t) was sent is straightforward: you simply 

check for the amplitude of S(t). However, with noise present, the observed amplitude can 

be affected by the noise, making it less obvious whether S(t) was indeed transmitted. If S(t) 

has a very weak amplitude compared to the noise, distinguishing between the two 

hypotheses becomes challenging. 

To tackle this problem, we will use the concept of the signal space. Let's write the 

likelihood function under AWGN: 

• If S(t) was sent: y(t) = S(t) + n(t). 



• If S(t) was not sent: y(t) = n(t). 

Given only y(t), our goal is to decide whether S(t) was sent or not. We will compute our 

sufficient statistic Z, defined as the inner product of y(t) with S(t): 

𝑍𝑍 = �𝑦𝑦(𝑡𝑡)𝑆𝑆(𝑡𝑡)  𝑑𝑑𝑑𝑑 

This integral will yield different results under the two hypotheses: 

• Under HS: 𝑍𝑍 = |𝑆𝑆|2 + ⟨𝑆𝑆,𝑛𝑛⟩, where |S|2 represents the power of S(t) and ⟨𝑆𝑆,𝑛𝑛⟩ is 

the cross-term involving noise. 

• Under HN: 𝑍𝑍 = ⟨𝑆𝑆,𝑛𝑛⟩, which only includes the noise term. 

To decide between HS and HN, we need to evaluate the likelihood function for each 

hypothesis and choose the one that maximizes it. This process ensures that we use the 

maximum likelihood approach to determine whether S(t) was transmitted. 

Let's analyze the distribution of Z under the two hypotheses. 

Under hypothesis HS, where S(t) is transmitted, the distribution of Z is: 

𝑍𝑍 ∼ Gaussian(|𝑆𝑆|2,σ2|𝑆𝑆|2) 

Here, |S|2 is a constant representing the signal's power, and ˂ S, n ˃ is a random variable. 

As we discussed earlier, ˂ S, n ˃ is the projection of the white Gaussian noise onto the 

signal S. This random variable has a mean of 0 and a variance of |S|2 σ2, as we covered in 

our discussion of random variables in the signal space context.  

Thus, the probability density function of Z under HS is: 

𝑝𝑝(𝑍𝑍|𝐻𝐻𝑆𝑆) ∝ exp�−
(𝑍𝑍 − |𝑆𝑆|2)2

2𝜎𝜎2|𝑆𝑆|2
� 

Under hypothesis HN, where only noise is received, the distribution of Z is: 

𝑍𝑍 ∼ Gaussian(0,𝜎𝜎2|𝑆𝑆|2) 



The probability density function of Z under HN is: 

𝑝𝑝(𝑍𝑍|𝐻𝐻𝑁𝑁) ∝ exp�−
𝑍𝑍2

2𝜎𝜎2|𝑆𝑆|2
� 

(Refer Slide Time: 08:13) 

 

To decide which hypothesis is more likely, we need to compare these two distributions for 

the given Z. We can simplify this comparison by focusing on the likelihood ratio, which 

involves dividing one distribution by the other.  

Thus, the likelihood ratio is: 

𝑝𝑝(𝑍𝑍|𝐻𝐻𝑆𝑆)
𝑝𝑝(𝑍𝑍|𝐻𝐻𝑁𝑁) ∝

exp �− (𝑍𝑍 − |𝑆𝑆|2)2
2𝜎𝜎2|𝑆𝑆|2 �

exp �− 𝑍𝑍2
2𝜎𝜎2|𝑆𝑆|2�

 

Simplifying this, we get: 



𝑝𝑝(𝑍𝑍|𝐻𝐻𝑆𝑆)
𝑝𝑝(𝑍𝑍|𝐻𝐻𝑁𝑁) ∝ exp�−

(𝑍𝑍 − |𝑆𝑆|2)2 − 𝑍𝑍2

2𝜎𝜎2|𝑆𝑆|2
� 

Expanding the numerator: 

(𝑍𝑍 − |𝑆𝑆|2)2 − 𝑍𝑍2 = 𝑍𝑍2 − 2𝑍𝑍|𝑆𝑆|2 + |𝑆𝑆|4 − 𝑍𝑍2 = −2𝑍𝑍|𝑆𝑆|2 + |𝑆𝑆|4 

So: 

𝑝𝑝(𝑍𝑍|𝐻𝐻𝑆𝑆)
𝑝𝑝(𝑍𝑍|𝐻𝐻𝑁𝑁) ∝ exp�

2𝑍𝑍|𝑆𝑆|2 − |𝑆𝑆|4

2𝜎𝜎2|𝑆𝑆|2
� 

Further simplification gives: 

𝑝𝑝(𝑍𝑍|𝐻𝐻𝑆𝑆)
𝑝𝑝(𝑍𝑍|𝐻𝐻𝑁𝑁) ∝ exp�

2𝑍𝑍 − |𝑆𝑆|2

2𝜎𝜎2
� 

Thus, we just need to check the sign of 2𝑍𝑍 − |𝑆𝑆|2. If 2𝑍𝑍 − |𝑆𝑆|2 is positive, then HS is more 

likely; if it is negative, then HN is more likely. This simplifies our decision-making process 

and provides a clear criterion for hypothesis testing. 

If Z is closer to |𝑆𝑆|2

2
, it is more likely that S was sent. Conversely, if Z is closer to 0, it is 

more likely that S was not sent. This aligns with our discussion on binary signaling. 

Essentially, if you take the ratio of the densities, it becomes clear that |𝑆𝑆|2

2
 serves as the 

decision boundary. 

This method provides a way to determine whether S was sent or not. This approach is a 

fundamental component, and similar strategies can be employed for various other types of 

parameter estimation. It's crucial to remember how we utilized the sufficient statistic Z to 

evaluate the likelihood. This process was demonstrated with real additive white Gaussian 

noise (AWGN). 

For complex AWGN, although I won’t go through the details here, if you perform the same 

analysis with complex Gaussian noise, you will find that the decision criterion becomes: 



1
𝜎𝜎2

Re(⟨𝑌𝑌, 𝑆𝑆⟩) −
|𝑆𝑆|2

2
 

(Refer Slide Time: 10:21) 

 

This makes sense because, when aligning the signal along the dimension of S, only that 

dimension matters. The component not aligned with S is irrelevant. Thus, the real part of 

the inner product ⟨𝑌𝑌, 𝑆𝑆⟩ is what truly matters.  

In a vector scenario, where 𝑌𝑌1,𝑌𝑌2,𝑌𝑌3, … represent S(t) plus independent and identically 

distributed (i.i.d.) noise samples, you would combine the distributions of these 

measurements. You use the fact that the noise values are i.i.d. to effectively combine them. 

The goal remains to maximize this combined function. This essentially translates to finding 

the real part of ⟨𝑌𝑌, 𝑆𝑆⟩ and determining if it falls to the left or right of |𝑆𝑆|2

2
. Please make sure 

to correct this to |𝑆𝑆|2

2
. 

Let’s now address a practical problem of significant importance: maximum likelihood 

phase estimation. To recap from the previous lecture, we discussed that when there is a 



phase offset φ, the I-component of the signal, denoted as M(t), is affected by a 

multiplication with cos φ. Similarly, the Q-component will be affected by a multiplication 

with sin φ. Thus, a phase offset essentially multiplies your signal S(t) by 𝑒𝑒𝑗𝑗θ, where θ 

represents the unknown phase we need to estimate. 

(Refer Slide Time: 14:47) 

 

In other words, at the transmitter, the signal is 𝑒𝑒𝑗𝑗2π𝑓𝑓𝑐𝑐𝑡𝑡, while at the receiver, it is 𝑒𝑒𝑗𝑗2π𝑓𝑓𝑐𝑐𝑡𝑡+𝜃𝜃. 

This results in a situation where you have cos(2πfct + θ) and sin(2πfct + θ) at the receiver, 

as opposed to just cos(2πfct) and sin(2πfct). This phase offset θ introduces a complication 

in the phase estimation process. 

Consequently, the received signal Y(t) is given by S(t) 𝑒𝑒𝑗𝑗𝑗𝑗. A point to note is that in various 

references, you might find slightly different formulations: some state that the receiver has 

cos(2πfct) and sin(2πfct), while the transmitter has cos(2πfct + θ) and sin(2πfct + θ). This is 

a minor difference. By accounting for the offset appropriately at one location, you will end 

up with the same results. 



In this context, we are dealing with complex additive white Gaussian noise (AWGN) with 

variance σ2, and our objective is to estimate the unknown phase θ. 

Based on our previous discussion, we have the following formulation: 

Re�𝑌𝑌, 𝑆𝑆𝑒𝑒𝑗𝑗𝑗𝑗� − |𝑆𝑆𝑒𝑒𝑗𝑗𝑗𝑗|2/2 

For simplicity, let’s denote ⟨𝑌𝑌, 𝑆𝑆˃  as |𝑍𝑍|𝑒𝑒𝑗𝑗𝑗𝑗 , where 𝑍𝑍𝑐𝑐 + 𝑗𝑗𝑍𝑍𝑠𝑠  represents the real and 

imaginary components of Z, respectively. 

Thus, the real part of �𝑌𝑌, 𝑆𝑆𝑒𝑒𝑗𝑗𝑗𝑗˃ is: 

Re�𝑒𝑒−𝑗𝑗𝑗𝑗 ⋅ 𝑍𝑍� 

Since ⟨𝑌𝑌, 𝑆𝑆˃, or |𝑍𝑍|𝑒𝑒𝑗𝑗𝑗𝑗, can be expressed as 𝑍𝑍𝑐𝑐 + 𝑗𝑗𝑍𝑍𝑠𝑠, the real part of �𝑌𝑌, 𝑆𝑆𝑒𝑒𝑗𝑗𝑗𝑗˃ simplifies 

to: 

Re�𝑒𝑒−𝑗𝑗𝑗𝑗 ⋅ 𝑍𝑍� 

Note that this term's norm does not depend on θ because |𝑆𝑆𝑒𝑒𝑗𝑗𝑗𝑗| is equivalent to |S|. We are 

therefore interested in: 

Re�𝑒𝑒−𝑗𝑗𝑗𝑗 ⋅ 𝑍𝑍� 

We examine this for different values of θ. For Z with a phase of φ, this becomes: 

mod 𝑍𝑍 ⋅ 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃 − 𝜑𝜑) 

So the likelihood function 𝐿𝐿(𝑌𝑌 ∣ 𝜃𝜃 ) is given by: 

𝐿𝐿(𝑌𝑌 ∣ 𝜃𝜃 ) = exp �
1
𝜎𝜎2

[|𝑍𝑍|𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃 − 𝜑𝜑) − |𝑆𝑆|2]� 

As mentioned earlier, |S| does not depend on φ, so we need to maximize this function with 

respect to θ. The optimal choice is θ = φ, where φ is the argument of Z. Specifically, φ is 

given by: 



𝜑𝜑 = tan−1 �
𝑍𝑍𝑠𝑠
𝑍𝑍𝑐𝑐
� 

Thus, the optimal θ is the angle of Z, which is 𝑍𝑍𝑠𝑠
𝑍𝑍𝑐𝑐

. Intuitively, this makes sense because to 

find the phase offset, you essentially need to rotate S to align with Y in a way that 

maximizes the inner product. This concept can be easily verified using GNU Radio. 

Next, we will discuss maximum likelihood delay estimation. 

(Refer Slide Time: 17:27) 

 

In the case of maximum likelihood delay estimation, we start with the expression: 

𝑌𝑌(𝑡𝑡) = 𝑆𝑆(𝑡𝑡 − τ)𝑒𝑒𝑗𝑗𝑗𝑗 + 𝑛𝑛(𝑡𝑡) 

where n(t) represents complex AWGN with variance σ2. Our objective here is to estimate 

three parameters simultaneously: the amplitude a, the phase θ, and the delay τ. This creates 

a three-pronged problem, as we need to determine all three parameters. 



To approach this, we parameterize the problem by defining a tuple or vector Γ that includes 

τ, a, and θ. Intuitively, we evaluate different values of S for various combinations of τ, a, 

and θ, and compute the overlap integral to find the combination that maximizes this 

integral. 

Unfortunately, this involves searching through a vast parameter space. To make this 

process more efficient, we use a matched filter approach. The matched filter essentially 

performs an operation similar to the integral we discussed. Specifically, we have: 

⟨𝑌𝑌, 𝑆𝑆(Γ)⟩ = A𝑒𝑒−𝑗𝑗𝑗𝑗 

Here’s how it works: 

1. We apply a matched filter, which involves the convolution of Y(t) with 𝑒𝑒𝑗𝑗𝑗𝑗, effectively 

removing the phase term 𝑒𝑒−𝑗𝑗𝑗𝑗. 

2. We then account for the delay τ and scale the result by the amplitude a. 

This process gives us: 

A𝑒𝑒−𝑗𝑗𝑗𝑗 �𝑌𝑌(𝑡𝑡)𝑆𝑆∗(𝑡𝑡 − τ)  𝑑𝑑𝑑𝑑 

where 𝑆𝑆∗(𝑡𝑡 − τ) denotes the complex conjugate of S(t - τ). 

At this stage, we set aside the norm |𝑆𝑆(Γ)| for a couple of reasons: 

• The norm |𝑆𝑆(Γ)|  does not depend significantly on the delay τ or the phase θ. 

Specifically, delaying S(t) or adding a phase shift does not change its norm. 

• Therefore, our focus is on maximizing the integral: 

A𝑒𝑒−𝑗𝑗𝑗𝑗 �𝑌𝑌(𝑡𝑡)𝑆𝑆∗(𝑡𝑡 − 𝜏𝜏)  𝑑𝑑𝑑𝑑 

Here, we are optimizing over a, θ, and τ to find the maximum likelihood estimate for these 

parameters. 



Our primary goal here is to estimate the delay τ. We previously discussed methods for 

finding the amplitude a and the phase θ, but now we focus on estimating τ. Over large 

intervals, we assume that the norm of S(Γ) is A2|𝑆𝑆|2, where 𝑆𝑆(Γ) represents S modified to 

include an amplitude scaling factor a, a delay τ, and a phase shift 𝑒𝑒𝑗𝑗𝑗𝑗. 

(Refer Slide Time: 20:10) 

 

The phase shift 𝑒𝑒𝑗𝑗𝑗𝑗  does not affect the norm, and the delay τ is irrelevant in the norm 

calculation over large intervals because shifting S(t) does not change its norm. Therefore, 

the likelihood function 𝐿𝐿(𝑌𝑌 ∣ Γ ) simplifies as follows: 

𝐿𝐿(𝑌𝑌 ∣ Γ ) ∝ Re�A𝑒𝑒−𝑗𝑗𝑗𝑗⟨𝑌𝑌, mf ⟩(𝜏𝜏)� −
A2|𝑆𝑆|2

2
 

Here, mf𝜏𝜏 denotes the matched filter response for the delay τ.  

To maximize the likelihood function with respect to τ, we note that the term A
2|𝑆𝑆|2

2
 does not 

affect the optimization process for τ because it is constant for a given τ. Thus, we focus on 

maximizing: 



Re�A𝑒𝑒−𝑗𝑗𝑗𝑗⟨𝑌𝑌, mf ⟩(𝜏𝜏)� 

Since a is a positive number, it can be factored out of the maximization problem. Therefore, 

the key step is to maximize the real part of: 

Re�A𝑒𝑒−𝑗𝑗𝑗𝑗⟨𝑌𝑌, *mf (𝜏𝜏)⟩� 

where the term involving a can be considered separately as it does not impact the 

maximization over τ. 

To maximize the real part of 𝑒𝑒−𝑗𝑗𝑗𝑗⟨𝑌𝑌, mf𝜏𝜏⟩, the process is quite intuitive. Essentially, if you 

align the phase of ⟨𝑌𝑌, mf𝜏𝜏⟩ with θ, you simplify the expression to its modulus. In other 

words, by choosing mf𝜏𝜏 such that its phase matches θ, you effectively maximize the term. 

Therefore, to find the maximum value, you simply need to identify the peak value of 

⟨𝑌𝑌, mf𝜏𝜏⟩ as a function of τ. 

Intuitively, this means you shift the matched filter across different delays and calculate the 

overlap integrals, finding the delay where this integral reaches its maximum value.  

To illustrate this concept, consider a practical example with Gaussian noise. Suppose your 

template signal is represented by a waveform, and the observed signal exhibits variations 

due to noise. The matched filter is essentially a time-reversed version of the template 

signal.  

If you convolve the observed signal with this matched filter, you should expect a peak in 

the resulting signal. This peak corresponds to the delay where the matched filter aligns best 

with the observed signal. In practical terms, if you shift the matched filter, you will 

eventually find that the peak value of the convolution output indicates the delay τ.  

Even with noise, which may cause some waviness, finding this peak through shifting and 

convolving will yield the delay. This method, while potentially affected by noise, remains 

effective for estimating delay, and we will also verify this approach using GNU Radio. 



If you introduce a random delay and then perform matched filtering, you can determine the 

delay by analyzing how the output of the matched filter is shifted. Essentially, instead of 

manually multiplying the signal by the matched filter at various points and integrating, 

which is essentially convolution, you can simplify the process. By convolving the signal 

with the matched filter and identifying the peak amplitude in the resulting output, you can 

directly determine the delay. This method works effectively for a single signal. However, 

if you have a signal composed of multiple pulses, you will need to make slight adjustments, 

but the core intuition remains the same: the highest correlation peak indicates the delay. 

(Refer Slide Time: 22:09) 

 

When it comes to tracking frequency offsets, the process becomes a bit more complex. 

Let’s consider an intuitive approach: Suppose you have a signal represented as cos(2πfct + 

θ). In a feedback-based system with a loop filter and a voltage-controlled oscillator, you 

can track frequency offsets. For simplicity, let’s assume the frequency is constant. 

If you multiply cos(2πfct + θ) by 𝑐𝑐𝑐𝑐𝑐𝑐�2𝜋𝜋𝜋𝜋𝑐𝑐𝑡𝑡 + 𝜃𝜃�� and focus on the phase offset, you can 

use the cosine angle addition formula to simplify the result. The product yields 



1
2
�𝑐𝑐𝑐𝑐𝑐𝑐�−4𝜋𝜋𝑓𝑓𝑐𝑐𝑡𝑡 + 𝜃𝜃 − 𝜃𝜃���, which can be simplified to 𝑠𝑠𝑠𝑠𝑠𝑠�𝜃𝜃 − 𝜃𝜃�� after applying a low-

pass filter.  

(Refer Slide Time: 26:44) 

 

If θ and 𝜃𝜃� are very close, then 𝑠𝑠𝑠𝑠𝑠𝑠�𝜃𝜃 − 𝜃𝜃�� ≈ 𝜃𝜃 − 𝜃𝜃�. The loop filter works to track this 

phase offset 𝜃𝜃 − 𝜃𝜃� and continually adjust it. The voltage-controlled oscillator changes the 

frequency based on the voltage applied, thus providing a cosine or sine wave that reflects 

the applied voltage. 

Given that 𝑠𝑠𝑠𝑠𝑠𝑠�𝜃𝜃 − 𝜃𝜃�� approximates 𝜃𝜃 − 𝜃𝜃� for small changes, if you repeatedly measure 

𝜃𝜃 − 𝜃𝜃� over time and divide by t, you essentially calculate the frequency offset. In other 

words, a phase-locked loop (PLL) intuitively tracks the phase difference between θ and 𝜃𝜃�, 

and over time, averages this phase difference. This averaging effectively provides the 

frequency offset, allowing the PLL to track the frequency. 

However, this PLL method works optimally with a pure carrier signal, such as a simple 

sine or cosine wave. It remains effective even in the presence of noise due to the low-pass 



filtering and averaging. When dealing with practical signals that have data modulated onto 

them, you need to be cautious. The PLL may need modification or adaptation to handle the 

data stream properly. 

In training-based approaches, there are two common methods: you can either send a bare 

carrier signal or a carrier with higher power. This allows the PLL to be trained at specific 

locations, and the locked frequency is maintained until drift occurs. Typically, clock offsets 

range from 10 to 100 parts per million (ppm). For instance, a 10 ppm offset at 1 GHz 

corresponds to 10
106

× 1 GHz, which translates to an offset in the range of kilohertz. 

Phase-locked loops are designed to search and track frequencies effectively. Once the PLL 

is close to the target frequency, it locks onto it, even if the actual frequency fc differs 

slightly from 𝑓𝑓𝑐𝑐′. The PLL corrects the phase offset and averages the phase changes to 

provide the necessary frequency compensation. This is the core intuition behind how 

phase-locked loops function. 

In our next class, we will explore the phase-locked loop from an optimization perspective 

and delve into differential modulation techniques. Thank you. 


