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Parameter Estimation for Practical Receivers - Part 1 

Welcome to this lecture on Digital Communication using GNU Radio. My name is Kumar 

Appaiah, and I am part of the Department of Electrical Engineering at IIT Bombay. In this 

lecture, we will focus on Synchronization and Non-Coherent Communication.  
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Throughout this lecture and the upcoming series, we will be addressing a critical 

assumption about communication systems. Previously, we examined the impact of noise 

on symbol detection. Now, we will delve into practical receiver challenges. Specifically, 

we will explore scenarios where the correct phase of the carrier or local oscillator is not 



available at the receiver, or where there is a frequency offset. What strategies can we 

employ in such situations? Additionally, we will need to estimate various parameters of 

the communication system. 

In this lecture, we will cover these issues and complement the discussion with some hands-

on experiments in GNU Radio.  
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Several practical challenges at the receiver include local oscillator offset, where the carrier 

frequency at the receiver may differ from the expected frequency, phase offsets, and 

synchronization. Synchronization involves determining the exact start of the symbol so that 

we can accurately capture those symbols. We also need to ascertain the correct sampling 

location and the precise timing for sampling after matched filtering. These are crucial 

aspects that need to be addressed at the receiver end. 

Receiver parameters have a substantial impact on performance, in addition to noise. If you 

do not sample at the correct location or have the precise carrier frequency and phase, you 

risk encountering significant errors because the receiver is not accurately capturing the 



signal. Therefore, one critical aspect we will explore is parameter estimation. This involves 

determining how to estimate the amplitude of the signal at the receiver, as well as the delay, 

phase offset, and frequency offset. These challenges fall under parameter estimation 

because there are multiple unknowns that need to be resolved amidst noise. Our goal is to 

devise a statistically sound method for obtaining the best estimates in the presence of noise. 

Additionally, we will investigate non-coherent communication, where we do not need to 

know the exact phase or frequency of the local oscillator. Instead, we will explore whether 

communication can proceed effectively if the phase and frequency are only approximately 

correct. 
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For receiver design, we will simplify some assumptions to convey the core concepts. 

Suppose the transmitted signal is represented as ∑𝑏𝑏𝑘𝑘𝑔𝑔𝑡𝑡𝑡𝑡(𝑡𝑡 − 𝑘𝑘𝑘𝑘), where b1, b2, b3, … are 

symbols from your constellation, such as QPSK or BPSK. Here, 𝑔𝑔𝑡𝑡𝑡𝑡(𝑡𝑡 − 𝑘𝑘𝑘𝑘) represents 

the pulse shaping function, which could be a sinc function, a root-raised cosine, or even a 

rectangular pulse, chosen based on constraints like power and bandwidth. 



The bandpass version of this signal is given by the real part of 𝑥𝑥(𝑡𝑡)𝑒𝑒𝑗𝑗2π𝑓𝑓𝑐𝑐𝑡𝑡. Essentially, you 

upconvert the signal by multiplying x(t) with 𝑒𝑒𝑗𝑗2π𝑓𝑓𝑐𝑐𝑡𝑡 . This results in the waveform 

𝑥𝑥(𝑡𝑡) × 𝑒𝑒𝑗𝑗2π𝑓𝑓𝑐𝑐𝑡𝑡 , where x(t) is split into its in-phase (I) and quadrature (Q) components: 

𝑥𝑥𝑐𝑐(𝑡𝑡) × 𝑐𝑐𝑐𝑐𝑐𝑐(2π𝑓𝑓𝑐𝑐𝑡𝑡)  and 𝑥𝑥𝑠𝑠(𝑡𝑡) × 𝑐𝑐𝑠𝑠𝑠𝑠(2π𝑓𝑓𝑐𝑐𝑡𝑡) , respectively. This waveform is centered 

around fc with a bandwidth of ± 𝑊𝑊
2

, assuming the baseband bandwidth of x(t) is W. 

Key issues of concern include delay, such as determining the exact start of the symbols and 

the appropriate sampling point. Accurate peak detection is crucial; otherwise, you will 

encounter a high rate of symbol errors. 

(Refer Slide Time: 10:24) 

 

Sampling offset can lead to symbol errors if you don't sample precisely at the correct point. 

However, an equally important issue is the carrier offset. Specifically, are you receiving 

the carrier frequency fc accurately at the receiver? Are you capturing the phase correctly? 

If either the phase or the frequency is incorrect, you will encounter significant issues. Let's 

perform a brief exercise to illustrate this. 



Assume you have a symbol represented as M(t). We'll refer to this as phase offset. For 

simplicity, let’s consider the signal x(t) as a real signal, 𝑥𝑥𝑏𝑏𝑏𝑏(𝑡𝑡) ⋅ 𝑐𝑐𝑐𝑐𝑐𝑐(2π𝑓𝑓𝑐𝑐𝑡𝑡) . At the 

receiver, the signal might be 𝑐𝑐𝑐𝑐𝑐𝑐(2π𝑓𝑓𝑐𝑐𝑡𝑡 + θ), where we're ignoring the quadrature (Q) 

component and focusing on the real part for simplicity. The concept remains similar. 

Now, consider the product of 𝑀𝑀(𝑡𝑡) ⋅ 𝑐𝑐𝑐𝑐𝑐𝑐(2π𝑓𝑓𝑐𝑐𝑡𝑡)  with 𝑐𝑐𝑐𝑐𝑐𝑐(2π𝑓𝑓𝑐𝑐𝑡𝑡 + ϕ) . Using the 

trigonometric identity 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ⋅ 𝑐𝑐𝑐𝑐𝑐𝑐𝑏𝑏 = 1
2

[𝑐𝑐𝑐𝑐𝑐𝑐(𝑐𝑐 − 𝑏𝑏) + 𝑐𝑐𝑐𝑐𝑐𝑐(𝑐𝑐 + 𝑏𝑏)], we get: 

𝑀𝑀(𝑡𝑡) ⋅ 𝑐𝑐𝑐𝑐𝑐𝑐(2π𝑓𝑓𝑐𝑐𝑡𝑡) ⋅ 𝑐𝑐𝑐𝑐𝑐𝑐(2π𝑓𝑓𝑐𝑐𝑡𝑡 + ϕ) =
1
2
𝑀𝑀(𝑡𝑡)[𝑐𝑐𝑐𝑐𝑐𝑐(ϕ) + 𝑐𝑐𝑐𝑐𝑐𝑐(2π𝑓𝑓𝑐𝑐𝑡𝑡 + ϕ)] 

Since the term 2𝜋𝜋𝑓𝑓𝑐𝑐𝑡𝑡 is twice the carrier frequency, it can be filtered out using a low-pass 

filter. What remains is: 

𝑀𝑀(𝑡𝑡) ⋅ 𝑐𝑐𝑐𝑐𝑐𝑐(ϕ) 

This result is problematic if the phase φ is unknown. If φ is close to 𝜋𝜋
2
, it will nullify the 

signal. Even if φ is not exactly 𝜋𝜋
2
 or zero, the signal-to-noise ratio (SNR) will degrade by a 

factor of 𝑐𝑐𝑐𝑐𝑐𝑐2(𝜑𝜑). This phase offset issue can significantly impact performance. 

Similarly, frequency offset introduces additional complications. Suppose at the receiver, 

the local oscillator frequency is 𝑓𝑓𝑐𝑐 + Δ𝑓𝑓 instead of the expected fc. The received signal is: 

𝑀𝑀(𝑡𝑡) ⋅ 𝑐𝑐𝑐𝑐𝑐𝑐(2𝜋𝜋𝑓𝑓𝑐𝑐𝑡𝑡) ⋅ 𝑐𝑐𝑐𝑐𝑐𝑐�(2𝜋𝜋𝑓𝑓𝑐𝑐 + Δ𝑓𝑓)𝑡𝑡 + 𝜑𝜑� 

Using the trigonometric identity 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ⋅ 𝑐𝑐𝑐𝑐𝑐𝑐𝑏𝑏 = 1
2

[𝑐𝑐𝑐𝑐𝑐𝑐(𝑐𝑐 − 𝑏𝑏) + 𝑐𝑐𝑐𝑐𝑐𝑐(𝑐𝑐 + 𝑏𝑏)], we get: 

𝑀𝑀(𝑡𝑡) ⋅ 𝑐𝑐𝑐𝑐𝑐𝑐(2𝜋𝜋𝑓𝑓𝑐𝑐𝑡𝑡) ⋅ 𝑐𝑐𝑐𝑐𝑐𝑐(2𝜋𝜋(𝑓𝑓𝑐𝑐 + Δ𝑓𝑓)𝑡𝑡 + 𝜑𝜑)

= 𝑀𝑀(𝑡𝑡) ⋅
1
2

[𝑐𝑐𝑐𝑐𝑐𝑐(2𝜋𝜋Δ𝑓𝑓𝑡𝑡 + 𝜑𝜑) + 𝑐𝑐𝑐𝑐𝑐𝑐(2𝜋𝜋𝑓𝑓𝑐𝑐𝑡𝑡 + 2𝜋𝜋(𝑓𝑓𝑐𝑐 + Δ𝑓𝑓)𝑡𝑡 + 𝜑𝜑)] 

Ignoring the constant term and the factor of 2, which can be filtered out, we are left with: 

𝑀𝑀(𝑡𝑡) ⋅ 𝑐𝑐𝑐𝑐𝑐𝑐(2𝜋𝜋Δ𝑓𝑓𝑡𝑡 + 𝜑𝜑) 



Here, Δ𝑓𝑓 represents the frequency offset, and it can cause additional issues similar to phase 

offset. Both phase and frequency offsets need to be carefully managed to avoid significant 

degradation in the performance of the communication system. 

In this scenario, accurately determining Δ𝑓𝑓 and φ is crucial. If, for example, Δ𝑓𝑓 is close to 

50 or 60 Hertz, your signal will exhibit oscillations. Ideally, you want to recover M(t) at 

the receiver to extract the symbols, but with the additional modulated term, some parts of 

M(t) will be amplified while others are diminished. This variation makes it nearly 

impossible to correctly identify the symbols unless you adjust Δ f and correct for φ. In other 

words, dealing with phase and frequency offsets poses a significant challenge in retrieving 

your symbols, which must be resolved by accurately estimating these parameters. 
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Additionally, if M(t) undergoes a scaling factor A, this scaling factor must also be 

determined. For instance, if your constellation is QAM-16 and the scaling alters the 

regions, all your decisions will be incorrect if the constellation is scaled improperly. 

Therefore, you need to account for amplitude scaling as well. To summarize, you must 



determine several parameters: the sampling point, the frequency offset, and the amplitude. 

These steps are essential for successful parameter estimation. 

Let’s move on to an introduction to parameter estimation. Recall that maximum likelihood 

(ML) and maximum a posteriori (MAP) estimation were used to determine which symbol 

was transmitted. In ML estimation, we identified the symbol that maximized the likelihood 

function given the received signal Y. In the case of MAP estimation, we found the symbol 

with the highest posterior probability, given Y. For equiprobable symbols, ML was used 

to maximize the probability of receiving Y. 

The distinction between parameter estimation and symbol detection lies in the nature of the 

problem. In symbol detection, the symbols come from a finite set, such as a QPSK or 

QAM-16 constellation. For QAM-16, you would evaluate 16 possible symbols to find the 

one that maximizes the likelihood or minimizes the distance metric. Parameter estimation, 

on the other hand, involves estimating continuous parameters like Δ f and φ, which affect 

the signal's recovery and quality. 

In parameter estimation, the goal is to find the value of a parameter, θ, that best describes 

a given observation. This parameter could represent various aspects such as amplitude, 

phase, delay, etc. We are interested in estimating θ based on the observation Y, where θ is 

a continuous variable. For instance, in the case of phase estimation, θ might range from -π 

to π or from 0 to 2π. This means we are selecting a value from an infinite set of possible 

values. 

This distinction is what defines the problem as one of estimation. Unlike detection, where 

we choose from a finite set of symbols, estimation involves determining a specific value 

from a potentially infinite range. In the context of maximum likelihood (ML) estimation, 

𝜃𝜃ML�  is found by maximizing the probability 𝑃𝑃(𝑌𝑌 ∣ 𝜃𝜃 ). Essentially, we vary θ to find the 

one that maximizes this probability. Since probabilities are non-negative, we can take the 

logarithm of the likelihood function. Using the logarithm is helpful because it simplifies 

calculations, particularly with functions like the Gaussian, where the exponential function 

complicates matters.  



In Bayesian estimation, if we have a prior distribution P(θ), we update our estimate based 

on this prior knowledge. For example, if we are estimating phase and know it is likely 

between -π/2 and π with high probability, this prior can be incorporated. The posterior 

probability 𝑃𝑃(𝜃𝜃 ∣ 𝑌𝑌 ) is proportional to 𝑃𝑃(𝑌𝑌 ∣ 𝜃𝜃 ) × 𝑃𝑃(𝜃𝜃). If P(θ) is uniform for all values, 

the Bayesian approach simplifies to ML estimation. This is consistent with detection 

theory, where MAP and ML approaches align for equiprobable symbols. 

So, remember, using logarithms can simplify complex expressions, especially when 

dealing with functions involving exponentials. As an example of a parameter estimation 

problem, let’s consider determining the amplitude A. 

Let's consider a simplified example of Binary Phase Shift Keying (BPSK) communication. 

In BPSK, the symbol B can be either +1 or -1. Suppose you have a system where you 

receive a number Y, and you need to estimate the amplitude A while being affected by 

Gaussian noise with zero mean and variance σ2.  

In this scenario, the problem is essentially a reformulation of the BPSK detection problem. 

Specifically, if B is +1, then Y follows a Gaussian distribution with mean A and variance 

σ2. Conversely, if B is -1, then Y follows a Gaussian distribution with mean -A and variance 

σ2.  

Mathematically, if B is known, the probability density function of Y given A and B = +1 

is: 

𝑃𝑃(𝑌𝑌 ∣ 𝐴𝐴,𝐵𝐵 = +1 ) =
1

√2𝜋𝜋𝜎𝜎2
exp�−

(𝑌𝑌 − 𝐴𝐴)2

2𝜎𝜎2
� 

Similarly, if B is -1, the probability density function is: 

𝑃𝑃(𝑌𝑌 ∣ 𝐴𝐴,𝐵𝐵 = −1 ) =
1

√2𝜋𝜋𝜎𝜎2
exp�−

(𝑌𝑌 + 𝐴𝐴)2

2𝜎𝜎2
� 

To estimate A, we perform maximum likelihood estimation (MLE). We find the value of 

A that maximizes the likelihood function. Intuitively, if we have one sample, the MLE is 



straightforward: without noise, Y would exactly match A or -A depending on whether B is 

+1 or -1.  

If the value of B is known, which corresponds to training-based estimation, the receiver 

can directly use the value of B to determine A. For instance, if the receiver is informed that 

B is +1, then it knows to expect A as the signal. Similarly, if B is -1, the receiver expects -

A. In the presence of noise, the maximum likelihood estimate of A will still be the value 

that best matches the received Y, since noise affects Y but does not change the basic 

principle of estimation. 

When attempting to estimate the amplitude A in BPSK communication, your best guess is 

typically the mean of the received signal. Thus, if B is known, you can estimate A directly: 

if B is +1, then �̂�𝐴 is Y; if B is -1, then �̂�𝐴 is -Y. 

However, if B is unknown, you need to average over the possible values of B. In practice, 

if the received value is significantly high, say, +7 and the noise variance is known to be 1, 

you can reasonably infer that B was +1. Thus, you can estimate A to be close to 7, possibly 

7.1, depending on the exact received value. 

Conversely, if you receive a very high negative value, such as -6, you would estimate A to 

be close to +6. This is because a high negative value makes it very unlikely that B was +1. 

The problem arises when the received signal is close to zero, as it becomes difficult to 

determine whether B was +1 or -1. 

In cases where the received value is near zero, the situation becomes more uncertain. The 

hyperbolic cosine function, cosh, helps address this uncertainty. Simplifying the expression 

involving 𝑒𝑒−
(𝑌𝑌−𝐴𝐴)2

2𝜎𝜎2  and 𝑒𝑒−
(𝑌𝑌+𝐴𝐴)2

2𝜎𝜎2 , you’ll find that the terms reduce to a form involving cosh, 

which captures the uncertainty when the received signal is close to zero compared to the 

noise variance σ. 

Thus, if the received value is several standard deviations away from zero, you can 

confidently estimate B as +1 or -1. However, relying on a single sample for estimation is 

generally insufficient and prone to error. 



Consider the scenario where you are using your cell phone, which is calibrating itself to 

the base station. When you are in close proximity to the base station, you can receive a 

clear signal with high signal-to-noise ratio (SNR). However, if you are inside a building or 

a tunnel, the SNR decreases because the noise level is relatively high compared to the 

signal. 

In such situations, it is beneficial to use multiple symbols for better estimation. This leads 

us to a vector-based approach where the received signal can be represented as: 

𝑦𝑦𝑘𝑘 = 𝑏𝑏𝑘𝑘 + 𝑠𝑠𝑘𝑘 

where k ranges from 0 to K-1, and A is the unknown parameter we want to estimate. 

(Refer Slide Time: 19:44) 

 

This problem is analogous to the single-symbol case but is extended to multiple 

measurements. In this vector form, you collect multiple observations: 𝑦𝑦0, 𝑦𝑦1, … , 𝑦𝑦𝐾𝐾−1 . 

Since the noise realizations nk are independent and identically distributed Gaussian 



variables, averaging these observations will help in reducing the impact of noise and 

improving the estimate. 

For example, if bk can be either +1 or -1, you adjust the sign of the corresponding yk based 

on the value of bk. In an extreme case where all bk are +1, the received signals would be: 

𝑦𝑦0 = 𝐴𝐴 + 𝑠𝑠0 

𝑦𝑦1 = 𝐴𝐴 + 𝑠𝑠1 

𝑦𝑦2 = 𝐴𝐴 + 𝑠𝑠2 

 ⋮ 

𝑦𝑦𝐾𝐾−1 = 𝐴𝐴 + 𝑠𝑠𝐾𝐾−1 
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The optimal approach here is to average the observations. Averaging effectively reduces 

the noise variance and provides a more accurate estimate of A. To formalize this, you 



represent y as a column vector consisting of the stacked values 𝑦𝑦0,𝑦𝑦1, … ,𝑦𝑦𝐾𝐾−1. Similarly, 

create vectors for b and n. The equation can then be expressed as: 

 𝑦𝑦 =  𝐴𝐴 ⋅ 𝑏𝑏 +  𝑠𝑠  

In this framework, 𝑦𝑦� is a Gaussian random vector with mean 𝐴𝐴 ⋅ 𝑏𝑏 and variance 𝜎𝜎2 ⋅ 𝐼𝐼. 

Given the vector b, you can perform a weighted average to estimate A. This approach is 

straightforward: if you multiply y by 𝑏𝑏𝑇𝑇, you obtain a sufficient statistic for estimating A. 

This makes the estimation process efficient and accurate. 

The core idea here is straightforward: flip the signs of the samples and average them 

appropriately. Each sample carries equal weight because the noise is independent and 

identically distributed, so averaging effectively reduces the noise impact and provides a 

reliable estimate.  
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However, in practical scenarios, such as when a transmission is sent to multiple users, you 

may not know the value of bk for each receiver. For instance, imagine ten people receiving 



a signal simultaneously. It's impractical to calibrate each user individually, as it would 

delay the transmission for others. Instead, the system must be designed to estimate the 

parameter A without prior knowledge of bk. This approach is known as blind estimation. 

In blind estimation, the problem is formulated similarly to the previous case, but now you 

need to average over all possible values of bk. Essentially, you need to marginalize over bk 

to eliminate it from the equations. Although I won't delve into the details in this lecture, 

this process leads to a form resembling the earlier approach. 

Previously, you had an expression involving: 

1
𝐾𝐾
�𝑦𝑦𝑘𝑘𝑏𝑏𝑘𝑘

𝐾𝐾−1

𝑘𝑘=0

 

which involved flipping the signs and averaging. In the blind estimation case, this 

transforms into a form involving the hyperbolic tangent function: 

tanh �
𝐴𝐴𝑦𝑦𝑘𝑘
𝜎𝜎2 �

 

The hyperbolic tangent function provides a soft estimate of bk. To illustrate, the tanh 

function is shaped like this: 

• It approaches -1 as its argument goes to -∞ 

• It approaches 1 as its argument goes to +∞ 

When you receive a highly negative or highly positive y, the tanh function assigns a higher 

weight to these values. For instance, if y is several times the noise standard deviation σ, it 

contributes more to the estimate. Conversely, if y is close to zero, the tanh function provides 

less weight. This behavior allows the function to act almost like a soft estimate for bk while 

simultaneously estimating A. 

In summary, the tanh function and similar sigmoid functions are useful in blind estimation 

because they provide a soft, adaptive estimate of bk while estimating A, effectively 

handling the uncertainty in the value of bk. 



If a sample is not reliable, you won't assign it much weight. To put it simply, if you use the 

hyperbolic tangent function to estimate 𝑏𝑏𝑘𝑘�, then if the amplitude is reliably high, whether 

positive or negative, you'll give that sample more weight. This is the fundamental approach 

we're using here. 

For now, let's conclude this lecture. In the next one, we will continue our exploration of 

parameter estimation and expand our discussion to include the estimation of other 

parameters, such as phase, frequency, delay, and so forth. Thank you for your attention. 


