Digital Communication using GNU Radio
Prof. Kumar Appaiah
Department of Electrical Engineering
Indian Institute of Technology Bombay
Week-07
Lecture-32
End-to-End Digital Communication System Simulation in GNU Radio

Welcome to this lecture on Digital Communication using GNU Radio. My name is Kumar
Appiah, and | am with the Department of Electrical Engineering at 1T Bombay. In this
lecture, we will integrate all the components we've covered in previous sessions to create
a complete system simulation. This involves generating data, converting it into symbols,
upconverting to the passband, receiving it with noise, downconverting to the baseband, and
finally, visualizing and verifying that we can accurately recover our symbols both with and
without noise. This process will give us a comprehensive understanding of a practical

communication system.

(Refer Slide Time: 05:24)

File Edit View Run Tools Help

D-RB-2 @ - " m ] > W 2 s
constellation_test 39 | canstellation_test 20 ol °
Core
Options 1
P! Variable RRC Filter Taps =« Waveform Generators

Title: bot e yet 10: saenp race W i :

OutpUEt Language: Fythan R i Const

| Geneate opsions: o7 aut Eaoae Mok G 102 Math Operators
Symbol Rato (M2 ik QT GUI Time Sink Add Const

O P U Exponentiate Const Int

— Multiply Const
Random Source

Fast Multiply Const
: i
:"":"""' i Constellaticn Encoder Throttle :":"'”""I‘ g:IR L ::‘"": i gl - Bitlsan Oper o
e Constellation Object: 110> | sameie Rat e i
um Samples: 1k e And Const
Repeat: ves
S | = Modulators

Constellation Object
Consteliation Object Constellation Modulator
10 myeonst

Constellation Type: Variable Constelation
symbol Map:0, 1,3, 2

Consellation Points _1-1) Constellation Decoder
Retatienal Symmetry: &
Dimensianality: |
Mormalization Type: Amplitude

Constellation Rect. Object

"~ Symbuol Coding

Constellation Encoder

Constellation Receiver
Constellation Soft Decader
Instrumentation

B e = P ey = = ar
alue
constellation_test_3.py* OT GUI Consteliation
Imports
Executing: 13 -u M /i JRadiod oo
constellation_test_3.py o . . .
myconst =gnuradio.digital digital_python.constellation_calcdist object at 0x71613afdd7bo=
(; rre_taps [0.00011419182555582843, 0.00017090880637836158, 0.0002250138932140544, 0.000274748774245381

samp_rat 192000 Scroll for details
<p< 4
v

" [cc) QD AI.



Let's start, as usual, by introducing a random source. Press Ctrl+F or Command+F and
search for "random." Select the random source, and configure it to output bytes. Since we
will be using QPSK, set the parameter to 4.

Next, add a constellation encoder. Press Ctrl+F or Command+F, search for "encoder," and
select the constellation encoder. Connect this to the random source. Now, add a throttle.

Press Ctrl+F or Command+F, search for "throttle,” and connect it accordingly.

Before proceeding, we need to define the constellation. Search for "constellation object"
using Ctrl+F or Command+F, and select it. Double-click to open it, and name it "myconst,"
which is perfectly fine. Leave the default variable constellation setting as it is; this will be

a gray-coded QPSK constellation.

Now, we need to ensure that we use the constellation we have created. Our next step is to
apply a pulse shaping filter. For this, we'll use a standard root raised cosine (RRC) filter.
Press Ctrl+F or Command+F, search for "RRC," and select the RRC filter taps. Double-
click to configure it. I made one adjustment: | changed the sampling rate to 1920.00 for

convenience.

We will also use a "samples per symbol" variable. Press Ctrl+F or Command+F, search for
"variable," and place it in your setup. Name it "SPS" (samples per symbol). | want the
symbol rate to be 8000, so set this to "Samp rate / 8000°. The double division here ensures
integer division, automatically computing the samples per symbol as 4. This means the
symbol rate is essentially "Samp rate / SPS", which will correctly yield 8000. This

configuration will automatically compute the RRC filter taps for us.

Next, we'll pulse shape our constellation-encoded symbols. To do this, we'll add an
interpolating FIR filter. Press Ctrl+F or Command+F, search for "interpolating FIR filter,"
and connect it. Set the interpolation factor to SPS because we want this filter to produce 24

samples for each input symbol. Use "RRC_taps" as the filter taps.

To verify that this filter works correctly in conjunction with the decimating FIR filter, let's

add a decimating FIR filter. Press Ctrl+F or Command+F, search for "decim," and select



the decimating FIR filter. Connect it, set the decimation to SPS, and use the same
"RRC_taps."

Finally, to check that everything is working as expected, add a constellation sync and a
time sync. Press Ctrl+F or Command+F, search for "time sync,” and add it. Then, add a
constellation sync as well. This setup will allow us to visualize and verify that the

constellation looks as expected.

When we run this, it appears quite small and very tiny. The reason for this is that the filter
has a scaling issue. To correct this, double-click on the filter and set the gain to about 5,

which should address the problem. This adjustment will bring the result closer to 0.707.

However, this is not exactly 0.0707 because this value should actually be the square root
of 24. To get this right, you can compute the square root of 24 manually, or you can use
the numpy module. To do this, press Ctrl+F or Command+F, type "import,” and import
numpy as np. Then, use "np.sqrt(SPS)" to calculate the square root of the samples per
symbol (SPS). This will handle the scaling correctly, and you should see a constellation
value very close to 0.0707.

We now have a clean stream of data displayed, showing the baseband complex data in
terms of its real and imaginary parts after decimation. This setup provides a good template
for verifying that the received data matches what is expected. For now, we can temporarily

remove the constellation sink, as we do not need it.

Our next step is to convert this signal to passband. To do this, we will add an “f¢" variable.
Press Ctrl+F or Command+F, search for "variable,” and create an “f¢ variable. Set "f¢" to
32000, which should be a safe choice given that our baseband signal is around 8000; this

should not cause any issues. You can adjust this value if necessary.

Next, we need to modulate the output of the interpolating FIR filter using a complex
exponential signal. Ideally, this would involve computing ~eY27f<t)* which can be
expressed using * 2cos(2 x fct)” and * 2sin(2 x fct)". However, to simplify, we can use

a single complex signal source. Press Ctrl+F or Command+F, search for "signal source,"



and select it. Set it to cosine with a frequency of “fc". The amplitude can be adjusted later,

and we may need to apply some scaling as well.
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We will now multiply these two signals. To do this, press Ctrl+F or Command+F and

search for "multiply” to find the multiplication block. Use this block to multiply the two

signals and then extract the real part. Specifically, you want the real part of x - e/2™/ct,

For this purpose, let's use the "Complex to Real" block. Press Ctrl+F or Command+F, and
search for "complex to real” to find this block, which is more appropriate than using
"Complex to Float" in this context. By using the "Complex to Real"” block, we will obtain

our passband signal.

Next, I will route this passband signal to a virtual sink to facilitate further processing. Press
Ctrl+F or Command+F, search for "virtual sink,” and use it to label the signal as
“passband_signal’. With this setup, we now have our passband signal ready for the

receiver.



At the receiver end, we need to introduce noise to the signal and then attempt to recover
the original signal. To add noise, let’s start by including a noise source. We will add a range
for our noise standard deviation ("noise_std"). Although the exact scaling is not crucial at

this stage, you can adjust it later if needed. We will apply some Gaussian noise.

For the next step, place a "Virtual Source" by pressing Ctrl+F or Command+F, searching
for "virtual source," and setting the stream ID to “passband_signal’. Arrange the virtual
source by moving it down to create some space. Ensure the virtual source is properly

connected to the signal flow.

Now, to add noise, press Ctrl+F or Command+F and search for "noise.” We will use a real
noise source, which mimics real-world noise conditions, set with the "noise_std". To
integrate the noise, grab an "Add" block by pressing Ctrl+F or Command+F, searching for
"add,” and ensure it is configured as a float add. Connect this block accordingly to the

signal flow.
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Now that we have our virtual source with the passband signal and added noise, we can
proceed with the receiver processing. The receiver's tasks involve multiplying by
V2 cos(2nf,t) and — /2 sin(2nf.t), followed by filtering the outputs with a low-pass

filter to recover the baseband signal.

Let's implement this step-by-step. First, add a signal source by pressing Ctrl+F or

Command+F and typing "signal.” Place this block in your flowgraph, and configure it with
a frequency f, set it to cosine, and use an amplitude of v/2. For convenience, approximate

V2 as 1.414, and set the data type to float.

Next, duplicate this signal source by copying it (Ctrl+C) and pasting it (Ctrl+V). Adjust

the new source to output —v/2 sin(2mf.t).

Now, we will multiply these signals with the passband signal. To do this, press Ctrl+F or
Command+F, search for "multiply,” and select a real multiplier block. Connect the
passband signal to both multipliers, and then connect each multiplier to the corresponding

signal sources. Duplicate the multiplier setup if needed.

After the multiplication, we need to filter the results to remove the 2 f. component. Add
two low-pass filters by pressing Ctrl+F or Command+F, searching for "low pass filter,"
and selecting a float low-pass filter. Set the decimation to 1, and configure the cutoff
frequency. In this case, you can set the cutoff frequency to f; or a reasonable value such as
1000 Hz.

Copy and paste the low-pass filter to create a pair, ensuring both filters have the same
settings. This filtering process will remove the 2 f. components from the signals.

Finally, combine the filtered signals to reconstruct the baseband signal. Before completing
the setup, ensure to perform any necessary decimation steps to match the sample rate

requirements.

Let's start by combining the filtered signals and then applying decimation. To do this, we'll

use a "float to complex™ block, so press Ctrl+F or Command+F, and search for "float to



complex." This will allow us to proceed with matched filtering since we now have our

baseband signal ready.

Next, we will use a decimating filter, which we can copy from earlier. Press Ctrl+C to copy
and Ctrl+V to paste the decimating filter. However, we'll need to add a delay element to
ensure that the sampling is properly aligned. To add a delay, press Ctrl+F or Command+F,

search for "delay," and select a delay block.

We will configure this delay element with a range from 1 to the samples per symbol (SPS),

which should be suitable for our needs. Name this delay element accordingly.

Now, we need to connect the delay element to our decimating filter. The delay is essential
because we introduce a causal element with the low-pass filter, and we need to account for

its length and group delay to accurately recover our signal.
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Finally, add a constellation sync block to visualize the recovered signal. Press Ctrl+F or

Command+F, search for "constellation sync,” and add this block to the flowgraph.



If you execute the flowgraph and encounter issues, ensure that the delay element is
correctly set. Make sure to configure the delay setting appropriately so that it reflects the
delay we introduced.

(Refer Slide Time: 18:30)
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Now, when you execute the flowgraph and adjust the delay, you’ll notice that the
constellation starts to align, with a result of 0.5, 0.5. This indicates a scaling issue.
Specifically, we needed the original e/2™<t to be scaled to approximately 1.414. By setting
the delay to 9, we correct this issue. For convenience, let's set the default delay range to 9

so we don’t have to constantly adjust it.

As you increase the noise, you'll observe that the constellation behaves similarly to how it
did in earlier scenarios. Now, for the final step, although we should ideally be able to
recover the data as well, I won't delve into adding a bit error rate or symbol error rate
counter at this point. This is because practical delays need to be aligned before performing

data computation. In real-world systems, delays can be more significant than our set delay



of 9 due to various system issues. Ultimately, recovering the signal and managing

transmission start times will need to be addressed, which we will explore later.
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For now, we can get a preliminary idea of whether the two sequences match. One approach

is to use the time sync block to compare the outputs. Connect the output from the

decimating filter to the same time sync block. This allows us to examine if there is any

discernible pattern.

Let's pause and zoom in for a closer look. In the time sync view, signal 1 and signal 3
represent the real part, while signal 2 and signal 4 represent the imaginary part.

Temporarily hide signals 2 and 4 to simplify the view.

Now, observe the remaining signals. Although it’s not easy to discern, the blue signal
represents the original, and the green signal should lag behind. Any patterns you see should

appear first in the blue signal and then in the green signal. This will help confirm if the

sequences are indeed aligned.
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When analyzing the signals, any pattern observed in the blue signal should eventually
appear in the green signal, albeit with a delay. Let’s examine a specific location to identify
if we can see a pattern. For instance, if we hide the green signal and focus on the blue one,
we can look for distinct features such as four sharp peaks surrounded by two less

pronounced peaks.

In the blue signal, if we observe four sharp peaks followed by two less sharp peaks, these
should also appear in the green signal but delayed. As you can see, the four sharp peaks
and two less sharp peaks are evident in the blue signal and are similarly reflected in the

green signal, confirming a noticeable delay.

To quantify this, consider the first sharp peak in the blue signal occurs at 1.63
microseconds, while in the green signal it appears at 1.68 microseconds, indicating a
practical delay. Let’s now check the imaginary part of the signals. If we hide the other

signals and focus on the red (early) and black (delayed), we should see the large valley



between the two flat peaks in the red signal appearing about half a millisecond later in the

black signal.

Indeed, this large valley is present in both signals, validating that the delay is consistent.

Aligning your transmissions should allow for accurate data recovery without major issues.

For simplicity, since using a constellation encoder and interpolating FIR filter is a common
practice, you might consider combining these functions into a single block to streamline
the process.

(Refer Slide Time: 24:00)
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For instance, you could simplify your setup by removing both the interpolating FIR filter

and the constellation encoder. Instead, use the constellation modulator, which has some
convenient features. It includes an integrated RRC generator, and by specifying the
constellation as "'MYCONST", setting differential encoding to "NO", and configuring
samples per symbol to "SPS’, you can automate the modulation process. Just make sure to

connect it appropriately in your flow graph.



Upon executing the flow graph, you'll notice that the constellation signals may still exhibit
some issues due to delay-related problems. Unlike the sharp peaks seen previously, these
signals might not be as distinct. This suggests that the internal filter used by the

constellation modulator might be introducing some delay.

To address this, add an additional delay. You can do this by copying and pasting a delay
block, renaming it to "delay 0", and setting its value to 0. Insert this delay between the
relevant components in your flow graph. After adding this delay, execute the flow graph
again. You should observe that the appearance of the signals improves, with the peaks
becoming clearer. However, if you continue to increase the delay beyond a certain point,

the signal quality may deteriorate.

Next, adjust the delay on the receiver side. With the receiver delay set to 0, gradually
increase it from 0 to 9. If you originally had a delay of 12 on the sender side, and you add
9 on the receiver side, you should reach a total delay of approximately 21, which aligns
with the expected value. You might notice a slight artifact in the signal, likely due to the
delay being between 12 and 13. This minor artifact is typical, but the overall result is

acceptable.

Keep in mind that using the constellation modulator can present challenges due to its
internal filter, which might not match the RRC filter you are using. Although the
constellation demodulator could potentially handle these discrepancies, for the moment,
sticking with this approach should suffice.

This flow graph might seem complex, but it provides a comprehensive view of how these
systems can be constructed. Practically speaking, it covers essential aspects: data
generation, modulation, upconversion to passband, downconversion to baseband
(including removal of spurious frequencies), matched filtering, and constellation recovery.

You’ve also encountered some issues, such as the impact of noise.

Let’s first set the delay values to 12 and 21. High levels of noise can introduce significant
problems. For instance, excessive noise can cause considerable interference and

distortions, which must be addressed. Additionally, there are other practical challenges we



haven't explored yet, such as incorrect carrier frequencies (fc) at the receiver or phase
offsets at the source. These issues can complicate data recovery and will be addressed in

future lectures.

In this lecture, we have assembled various components of practical modulation and
demodulation. Specifically, we covered how to convert random data into symbols, shape
these symbols into a waveform, upconvert using a carrier frequency, add noise,
downconvert, apply matched filtering, and finally recover the symbols and bits. This forms

the basic framework of a communication system.

In subsequent lectures, we will use this foundational template to explore more practical
aspects, including frequency offsets, phase offsets, channel impairments, and other real-
world challenges. We will relax our assumptions about the receiver and investigate how

receiver impairments affect system performance. Thank you for your attention.



