
Digital Communication Using GNU Radio

Prof Kumar Appaiah

Department of Electrical Engineering

Indian Institute of Technology Bombay

Week-01

Lecture-03

In this lecture, we are going to continue our exploration of GNU radio. Building on top
of the knowledge that we have gained in the previous lecture, we are now going to
explore several new blocks, in particular those that offer you flexible usage of variables
and ranges that allow you to put together dynamic simulations wherein you can change
the parameters of the simulation at runtime. We will also see some simple ways to
interface hardware. In particular, we will be interfacing the sound card of your PC in
order to perform hardware based experiments in GNU radio as well. Going back to our
original program, let us now add some interactivity to the signal source. It will be useful
for us to be able to change the signal source characteristics.

To do so, we need to change some aspects of the signal source and that too dynamically
when the program is executing. Let us change the frequency of the source while we are
running the program interactively. To this end, the first step that we will take is to change
this 1000 and we will call it FREQ which is a keyword. As you can see, the signal
source turns red because GNU radio cannot interpret this FREQ.

Since we want the frequency to be changed interactively, we will add a block to our
flow graph called range. So Ctrl F or Cmd F and we will type range and we get the
QT-GUI range and add it to our flow graph. We will double click this range and change
the ID to the same name that we specified in our frequency source which is FREQ. The
type should be float and since our sampling rate is 32K, we will make this go from
100Hz, start at 100Hz and stop at 16000Hz. We will leave the other settings unchanged
and say OK.

We can now execute the flow graph and now at the top, you will see a slider with the
title FREQ. By changing the slider, you can see that the frequency of the sinusoid ends
up changing. You can also enter the frequency by selecting this area and just typing in
the frequency that you desire. I have typed in 8000 to verify we will take this peak
which is around 16.6 milliseconds.



The next peak is at 16.18 milliseconds, 16.6, 16.72 that is about 0.125 milliseconds that
corresponds exactly to 8000Hz.

You can now interactively change the frequencies and view this plot. Let us add the
grid and let us also add an auto scale so that you can see this. Now clearly, this does not
look like a sinusoid at all. The reason is because even though the sinusoid is being
captured correctly, the number of samples that will show that this is a sinusoid is
insufficient. So, if you really want to visualize better, you can change the number of
points over here.

Let us say to 4096 and now let us make the frequency 5000Hz. You can see that at
5000Hz, it is now a little more evident that it is like a sinusoid although there are still
very sharp edges. Let us make this 4000Hz. You can clearly see that there is a triangle
like feature although it is not really a triangle, you can see that it is the sinusoid in the
background. The reason this happens is because unlike the picture that we saw, GNU
radio interpolates samples linearly.

Therefore, if you do not have a sufficient number of samples, you will always end up
with plots that do not resemble a sinusoid. That is not of any concern because implicitly
the sinusoid lies in the background and as long as you satisfy Nyquist criterion, there is
no loss of information. Let us convert this to a stem plot. You can see that these dots are
what GNU radio is joining with lines. Another block that is very useful is the QT-GUI
frequency sink.

Ctrl F or command F and type freq, you will see instrumentation the QT-GUI frequency
sink. Drag and drop it into your flow graph. Change the type from complex to float by
double clicking the block and altering the type. One important aspect of GNU radio
blocks is that one output can be connected to multiple inputs. Let us take this throttle and
connect it to the output of the throttle to the QT-GUI frequency sink.

Let us now execute this flow graph. As you can see, GNU radio neatly lays out the
range slider, the amplitude versus time, this is the time sink and the QT-GUI frequency
sink as well. Let us set this to a 1000 Hz and let us zoom in over here. You can see that
there is a peak exactly at 1 kHz and a peak exactly at minus 1 kHz. There are two peaks
for this real signal because cos omega naught t has a Fourier transform that is two sided.

We will see this more closely in the next lecture. Now these peaks are not sharp, they
are fat and they have something like a lobe characteristic. Why is that the case? The
reason is because by default, GNU radio performs what is called windowing before it



displays to you the frequency characteristics. Let us change this to rectangular. A
rectangular window prevents any pre multiplication when the frequency characteristics
are shown.

Let us now check what a 1000 Hz looks like. Now you see that a 1000 Hz looks like
two really sharp edges. The sharp edges, sharp sticks correspond to exactly plus 1 kHz
and minus 1 kHz. However, the peaks are exactly at around minus 6 dB and there are
two peaks, one at plus 1 kHz and minus 1 kHz. To understand the properties of the GNU
radio frequency sink better, we must first understand that it plots the magnitude response
that is it plots mod H of f square.

More importantly, it gives a log plot that is it plots 10 log H of f square that is the same
as 20 log H of f in dB. In addition, you got two sticks for 1000 Hz, but you will not get
sticks for all frequencies. The reason is because much like any other computational way
of finding the frequency, the GNU radio frequency sink uses the discrete Fourier
transform for finding the DFT. Therefore, you will get distinct spectral lines only when f
upon f s times NFFT is an integer. For example, if you choose 1000 Hz and the
sampling rate is 32000, 1000 upon 32000 multiplied by 1024 is an integer.

Now the reason this is minus 6 dB on both of these is because a cosine is half e power j
omega naught t plus half e power j minus omega naught t and as you are aware a half
corresponds to minus 6 dB. If we change this to any other frequency that has the
characteristic that that frequency upon sampling rate multiplied by NFFT is an integer,
you will get sharp lines. For example, if we choose 4000 Hz, you will get sharp lines.
However, 5000 Hz sorry 5200 Hz, 5300 Hz for example, will not yield sharp lines. The
reason is because 5300 upon 32000 multiplied by NFFT is not an integer.

Therefore, you must be careful when interpreting the frequency characteristics. Always
remember that GNU radio uses the DFT in the background to interpret the results of the
frequency sink correctly. Coming back to our example flow graph, we will now add our
first hardware sink. Before we go into this, remember that throttle is required only for
those flow graphs that do not have a hardware source or a sink. So the first thing that we
will do is to remove the throttle.

You can do so by clicking on the throttle and hitting the delete key or by right clicking
on the throttle and saying delete. You can now connect the signal source by clicking on
the out to the QT-GUI time sink by clicking on in. Once again, we will connect it to the
frequency sink as well. But before we run it, we will add our hardware sink, which is the
audio sink. To do so, press Ctrl F or Command F and type audio so that you get a list.



We will choose the audio sink and place it here. We will connect the signal source to
the audio sink. In order to hear the audio more clearly, let us also change the range to
start at 1000 hertz and make the default value 1000 hertz. This can be done by double
clicking on the range and changing the default and start values to 1000 each.

Let us now run this. If you run this, you will be able to hear a sine wave, which is a
tone. By changing the frequency, you will hear that the tone also changes frequency and
you can clearly hear this. For the remaining part of this lecture, I am going to mute the
audio, but you can hear it on your computer when you perform the experiment. So as
you can see, by changing the frequency, you will be able to hear different tones and
depending on the volume and your speaker characteristics, you can possibly go up to
higher frequencies as well. We will now remove the audio sink to perform another
simulation, but to do so, we must add back the throttle.

So I am going to click on the audio sink, delete it, click on this arrow, delete it, click on
this arrow, delete it, all with the delete key on my keyboard. You could also right click
on the arrow and click delete. We will now add back the throttle by typing Ctrl F,
Command F and throttle and moving the throttle over here, double clicking on the
throttle, changing the time to float, connecting it back to our time sink and frequency
sink. The next thing that we are going to do is to filter a signal. We are going to now add
a low pass filter, which will allow us to filter the signal that is being output by the signal
source.

To add a low pass filter, we hit Ctrl F or Command F and type low pass and we take the
low pass filter and bring it over here. As you can see, there are several fields in the low
pass filter that are red because you need to specify them. Let us double click the low
pass filter. We are now going to say float to float. Decimation or interpolation is when
you need to change the rate at which the signals come in and go out.

In this case, we are not performing any decimation or interpolation. So we can choose
either of these options interpolating or decimating and keep the interpolation or
decimation respectively at 1. The gain is the pass band gain characteristic. The cutoff
frequency is where the filter starts cutting the signal out. Let us say that the cutoff
frequency is 4500 hertz and the transition width to be a 1000 hertz, which means that
signals that are above 4500 hertz will start seeing reduced amplitude at the output of the
filter and at around 5.

5 kilohertz onwards, those signals will be very very low in power. We then click OK to
return to our flow graph. Next we connect our signal source to the low pass filter. Now
to visualize the output of the low pass filter, we can now choose two approaches. One



approach would be to add another QT-GUI time sink and QT-GUI frequency sink.

This is disadvantageous for two reasons. The first is that adding these would complicate
the flow graph and more importantly, it would not provide us a direct way to compare
the signal source output with the filtered output. Therefore it is better for us to visualize
the output of the low pass filter directly within the QT-GUI time sink and frequency sink.
To do this, you can double click the QT-GUI time sink. Hold down and you will find the
number of inputs as an entry.

Change this to 2 and press OK. Similarly, double click on the QT-GUI frequency sink
and change the number of inputs to 2 and say OK. You can now see that both the sinks
have two inputs, IN0 and IN1. We can connect the output of the low pass filter to IN1 on
both of these and by executing the flow graph, you will now see a frequency plot and a
time plot along with our range. Clearly in the time plot, you can see two sinusoids, this is
67 milliseconds, 68 milliseconds, 1 millisecond gap, this is 67.1, this is 68.1. Both of
these are 1 kHz sinusoids. The reason for the offset is because the filter adds some
amount of delay. In the frequency domain, you see a red peak. However if you click on
the data 1 to make the red peak disappear, you will see the blue peak right behind it.
This indicates that both of them have roughly the same amount of amplitude.

By increasing the frequency, you will see that till about 2 kHz or so, there is not much
of a difference other than the delay the filter introduces. However, as we get close to
around 4 kHz, you will see that the red curve starts seeing some diminishing amplitude.
This is because the effect of the filter is starting to show up. By taking it to 4.5 kHz, you
can clearly see that the amplitude of the red curve is much lower.

Over here in the frequency domain, you can clearly see that the blue peak at about
minus 8 and while the red peak is about minus 16, this is about an 8 dB suppression that
corresponds to about a one-third in amplitude or so. If you now take it further and take it
to around 6.5 kHz, in the time domain, the signal is very diminished. If you right click
on this, you will see that in the frequency domain, this is at minus 6 dB, this is around
minus 65 dB, there is a 60 dB suppression indicating that the filter performs very well.
If you now go back to a low frequency, you get back the old behavior wherein because
the filter allows signals in the pass band through without much amplitude change, the
two signals look very close to the same other than the delay.

We can repeat this for the case where you have hardware as well. Let us once again
remove the throttle and add back the audio sink. We click on the throttle and click delete,
control F, audio. We drag the audio sink over here. Connect the output of the signal
source, sorry, the low pass filter to the audio sink.



You connect the signal source inputs back because there is no throttle. If we now
execute the flow graph, we can hear the 1 kHz tone. We can now hear roughly a 2 kHz
tone.

Around 3 kHz also it is audible, even at 3.8 kHz. But the moment you hear to about 4.6
kHz, you will see that the amplitude starts diminishing. And after 5 kHz, it is hardly
audible indicating that GNU radio is actually performing real time filtering and cutting
off the frequencies above around 4.5 kHz. If you set it to something close to 4.5 kHz,
you will be able to hear the signal in a feeble way and the amplitude gets back for lower
frequencies. Let us now close this and return to the original configuration with the
throttle. So I am going to click on this audio sink and hit delete, control F or command F,
throttle. Click back the throttle, double click on it, choose float, remove this connection,
connect the signal source to the throttle, throttle to the time sink. Remember that one
throttle is needed throughout the flow graph, it does not matter where it is and with this
we have got back the old behavior.

You can clearly see that as you increase the frequency, the red signal gets diminished, if
you take it back to less than 4 kHz, it is roughly at the same amplitude at which you start.
There are several other possibilities that you can explore in GNU radio. These are part of
the assignments that are shared. Please go through them and learn GNU radio effectively.
In this lecture, we have seen how you can put together the several blocks that GNU radio
offers you in order to obtain many practical simulations as well as hardware based
experiments.

In the remaining part of the course, throughout the course, we will go through many
concepts and implement them on GNU radio to easily visualize as well as see the impact
of change of parameters on these. So please try to follow along and use GNU radio with
me throughout this lecture series. Thank you. Thank you.


