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Welcome back to our lecture on Digital Communication using GNU Radio. I’m Kumar 

Appiah from the Department of Electrical Engineering at IIT Bombay. In this session, we 

will continue our exploration of bit errors and symbol errors across various constellations. 

In our previous lecture, we discussed how to compute the energy of a constellation and 

how to scale the constellation points to achieve the desired energy. We specifically 

calculated the symbol error rates for both BPSK and PAM-4, and we gained a foundational 

understanding of how to approach similar calculations for other linear constellations. 
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Today, we will start by examining the symbol error rate for QAM-4, which introduces us 

to constellations with complex symbols, unlike PAM-4 and BPSK, where the symbols are 

real. 

Let’s delve into computing the average energy of a constellation, beginning with QPSK, 

also known as QAM-4. As discussed in the previous lecture, it is optimal to center the 

constellation in such a way that even if it is symmetric, positioning the center away from 

the origin can reduce the overall energy expenditure. Proper centering ensures that, for the 

same energy, you achieve a better bit error rate or symbol error rate. 

So, let's continue by exploring QAM-4 in more detail, applying these principles to 

understand its performance and energy characteristics. 
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We’re familiar with the QPSK constellation, so let's take a closer look. Consider the points 

of the constellation: α + jα, α - jα, -α + jα, and -α - jα. All four points are equiprobable. The 

energy associated with sending a particular point, such as α + jα, is calculated as α2 + α2, 

which simplifies to 2α2 because we square the magnitude of α + jα and divide by 4 due to 



the probability of sending that point being 1/4. Therefore, multiplying by 4 for all points 

gives us 2α2. 

To set this equal to the desired signal energy Es, we solve for α: 

2𝛼𝛼2 = 𝐸𝐸𝑠𝑠 

𝛼𝛼 = �𝐸𝐸𝑠𝑠
2

 

Thus, the constellation points become ±�𝐸𝐸𝑠𝑠
2

± 𝑗𝑗�𝐸𝐸𝑠𝑠
2

, which are exactly what we’ve 

illustrated. I’ve deliberately chosen these values to reflect an energy Es, rather than unit 

energy. 
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I have highlighted certain areas in grey and white for a reason. Suppose we transmit a 

particular constellation point. The noise affecting this point is complex additive white 

Gaussian noise (AWGN). You can imagine a two-dimensional Gaussian noise distribution 



centered on the constellation point, which means the noise can affect the point in any 

direction with equal probability. 

This setup leads to several possible error events. For example, if the point is detected 

incorrectly as another, such as a4 being mistaken for a1, a3, or a2, these are considered error 

events. Specifically, in QAM-4, there are three distinct possible symbol error events. While 

it is possible to compute these error probabilities individually, a more efficient approach is 

available. 

Let's simplify this approach by considering the QPSK constellation in terms of its 

quadrants. If we look at a constellation point, say a4, which is located in the fourth quadrant, 

and analyze the possibility of it being detected as another point in a different quadrant, such 

as a1, a2, or a3, we can compute the probability of error more easily. 

(Refer Slide Time: 11:37) 

 

To determine whether a4 is misdetected as a1 or a2, we need to understand how far the point 

has shifted from its original position. Essentially, we are interested in whether the point has 

moved sufficiently in the real part to fall into the region corresponding to a1 or a2. This 



means we need to assess whether the real part of the received value has shifted by more 

than 𝑑𝑑
2
. 

Here, 𝑑𝑑
2
 represents the distance from the vertical axis (the imaginary axis) to the decision 

boundary. Therefore, the probability of a4 being misdetected as a1 or a2 can be computed 

using the Q-function. Specifically, it is given by: 

𝑄𝑄 �
𝑑𝑑

2σ�
 

In this case, d is �𝐸𝐸𝑠𝑠/2 × 2 = �2𝐸𝐸𝑠𝑠, and σ represents the standard deviation of the noise, 

which is �𝑁𝑁0/2 because we are considering only the real part of the signal. Thus, the 

expression for the probability of error is: 

𝑄𝑄 �
�2𝐸𝐸𝑠𝑠

2 ⋅ �𝑁𝑁0/2
� 

By focusing on the real part of the signal and using this simplified approach, we can 

efficiently compute the probability of symbol errors in QPSK. 

Similarly, if you compute the probability that a4 is misdetected as a3 or a2, you will find 

that the process is quite straightforward and yields similar results. To determine the overall 

probability that a4 is misdetected, you can apply basic probability principles. Specifically, 

if we denote the events of misdetection as E1 and E2, the probability of a4 being in error 

can be calculated using the union of these events. 

You can use the formula: 

𝑃𝑃(𝐸𝐸1 ∪ 𝐸𝐸2) = 𝑃𝑃(𝐸𝐸1) + 𝑃𝑃(𝐸𝐸2) − 𝑃𝑃(𝐸𝐸1 ∩ 𝐸𝐸2) 

This formula accounts for the overlap between the events E1 and E2, so you subtract the 

probability of the intersection to avoid double-counting. Alternatively, you can also use the 

Q-function directly to compute this probability.  
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For a simpler approach, consider the fact that if the real part of the constellation point needs 

to shift by d/2 or more to fall into a different region, you are essentially looking at how far 

the point moves in relation to the decision boundaries. The imaginary part should not shift 

by d/2 or more. Therefore, you need to compute the probability based on these shifts in 

both dimensions. 

In a more direct calculation, the probability of error can be expressed as: 

2 × 𝑄𝑄 �
�𝐸𝐸𝑠𝑠
𝑁𝑁0

� − 𝑄𝑄2 �
�𝐸𝐸𝑠𝑠
𝑁𝑁0

� 

The subtraction accounts for the common area where both types of misdetections overlap. 

There might be slight scaling differences in the calculations, but this formula provides a 

reliable estimate of the symbol error rate. 



To guide you through the calculation for symbol error probability, consider the following. 

Let's denote d as the distance, where in this case 𝑑𝑑 = �2𝐸𝐸𝑠𝑠. For the correct calculation of 

the error probability, we use: 

𝑄𝑄 �
𝑑𝑑

2𝜎𝜎�
 

Here, d is �2𝐸𝐸𝑠𝑠, so for this particular event, the probability is: 

𝑄𝑄 �
�2𝐸𝐸𝑠𝑠

2�𝑁𝑁0/2
� = 𝑄𝑄 �

�𝐸𝐸𝑠𝑠
�𝑁𝑁0

� 

This gives the probability that the real part of the signal moves by d/2. The imaginary part 

should not move by the same amount. To account for this, we need to calculate: 

𝑄𝑄 �
�𝐸𝐸𝑠𝑠
𝑁𝑁0

� × �1 − 𝑄𝑄 �
�𝐸𝐸𝑠𝑠
𝑁𝑁0

�� 

For the scenario where both the real and imaginary parts experience similar shifts, you will 

add: 

𝑄𝑄 �
�𝐸𝐸𝑠𝑠
𝑁𝑁0

� 

Expanding this, the total probability expression becomes: 

2𝑄𝑄 �
�𝐸𝐸𝑠𝑠
𝑁𝑁0

� − 2�𝑄𝑄 �
�𝐸𝐸𝑠𝑠
𝑁𝑁0

��

2

 

This formula represents the probability of symbol error for QAM-4. For high SNR 

scenarios, it can be approximated as: 

2𝑄𝑄 �
�𝐸𝐸𝑠𝑠
𝑁𝑁0

� 



Now, let’s consider QAM-16, which is a more complex constellation with 16 symbols. 

Unlike QAM-4, where increasing the number of symbols leads to higher error rates, QAM-

16 is widely used, especially when there is a sufficient SNR. It allows for denser packing 

of symbols compared to PAM-4. 
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Interestingly, QAM-16 can be related to PAM-4. For example, QAM-4 can be visualized 

as a combination of two BPSK systems: one determining the position along the real axis 

and the other along the imaginary axis. Similarly, QAM-16 can be seen as a combination 

of four PAM-4 systems. Here, one PAM-4 constellation determines the vertical position, 

while another determines the horizontal position. 

Let's quickly compute the symbol energy for QAM-16. In a QAM-16 constellation, there 

are 16 points arranged as follows: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, and so on. For simplicity, and 

because we're centering our analysis around the origin, I'll sketch these points roughly. 

Assume we have the points (3α, 3α), (3α, α), (α, 3α), and (α, α).  



Our goal is to determine the value of α such that the average energy of all constellation 

points equals Es. To do this, we calculate the energy of each point, then average it. Here’s 

how we do it: 

1. Calculate the Energy for Each Point: 

• For (3α, 3α): The energy is (3α)2 + (3α)2 = 18α2. 

• For (3α, α): The energy is (3α)2 + α2 = 10α2. 

• For (α, 3α): The energy is α2 + (3α)2 = 10α2. 

• For (α, α): The energy is α2 + α2 = 2α2. 

Since each point contributes to the average energy, and considering symmetry, we multiply 

each energy term by 4 (the number of unique points in the quadrant).  

2. Compute the Average Energy: 

• Total energy = 4 × �18𝛼𝛼
2+10𝛼𝛼2+10𝛼𝛼2+2𝛼𝛼2

16
� 

• Simplify: Total energy = 40𝛼𝛼
2

4
= 10𝛼𝛼2 

To match this to Es, we set 10α2 = Es, so:  

𝛼𝛼 = �𝐸𝐸𝑠𝑠
10

 

Thus, the constellation points should be scaled by �𝐸𝐸𝑠𝑠
√10

. Hence, the coordinates of the points 

in the normalized constellation are ±3 �𝐸𝐸𝑠𝑠
10

 and ±1 �𝐸𝐸𝑠𝑠
10

. 

While the constellation might appear complex, it offers a significant advantage in terms of 

data transmission. Each symbol in QAM-16 can encode 4 bits, compared to PAM-4 where 

each symbol encodes only 2 bits. This density of information per symbol enhances the 

efficiency of data transmission. 



I’ve highlighted three specific points in different colors: red, light blue, and violet. These 

are the critical points for computing the symbol error rate. This is because, due to 

symmetry, the other points in the constellation will have similar error characteristics. For 

instance, points that are symmetrically placed relative to the origin will have analogous 

error probabilities. 

When analyzing the symbol error rate for QAM-16, it’s helpful to recognize that all eight 

points in a given quadrant are similar, meaning they will experience similar symbol errors. 

For simplicity, you only need to compute the error rate for three distinct points, though I 

will explain how to approach this. 

Consider a distance d between points in the constellation. In this context, d is defined as 

2�𝐸𝐸𝑠𝑠
10

, and all points are spaced by this distance. Now, let's examine the error events for 

these points: 

1. For the first point: 

Errors occur if the received signal moves in any of the directions that are equidistant from 

the point. This scenario resembles QPSK closely. You can compute the error events for 

this point using the same approach as you would for QPSK, adjusting for the different 

distance d. 

2. For the second point: 

This point behaves similarly to PAM-4. Errors occur if the received signal moves to any 

of the four adjacent regions. The computation is straightforward and follows the same 

principles as those used for PAM-4. 

3. For the third point: 

This point has four decision boundaries, meaning errors can occur if the signal moves 

across any of these boundaries. The approach involves calculating errors along both the 

real and imaginary components, similar to how you handle the middle point in PAM-4, and 

then combining these results. 



Therefore, while calculating the symbol error rates for QAM-16 can be complex due to the 

multiple decision boundaries and overlapping regions, the fundamental principles are the 

same as for simpler constellations.  
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For high SNR scenarios, detailed calculations might be cumbersome. In such cases, using 

an approximation like the union bound can be very useful. The union bound provides an 

upper limit on the probability of error by summing the probabilities of error for each 

constellation point. Specifically, it is given by: 

𝑃𝑃(error) ≤�𝑄𝑄�
|𝑆𝑆𝑗𝑗 − 𝑆𝑆𝑖𝑖|

2𝜎𝜎
� 

Here, Q is the Q-function, Si represents the transmitted symbol, and Sj represents a 

potentially erroneous symbol. This method simplifies the calculation by bounding the 

probability of error rather than computing it precisely, making it a practical tool for 

handling more complex constellations like QAM-256, QAM-1024, or QAM-4096. 



In simpler terms, what they are suggesting is to use the union bound without worrying 

about overlapping errors. In the case of QPSK, for example, we previously considered 

𝑃𝑃(𝐸𝐸1) + 𝑃𝑃(𝐸𝐸2) − 𝑃𝑃(𝐸𝐸1 ∩ 𝐸𝐸2) to account for overlapping error events. However, with the 

union bound, we simplify this by ignoring the intersection term. 

So, instead of subtracting out the overlap, the union bound approach involves summing the 

probabilities of individual error events. Specifically, you compute 𝑄𝑄 �𝐷𝐷𝑖𝑖𝑖𝑖
2𝜎𝜎
� for each pair of 

constellation points. This means you calculate the probability of error assuming each pair 

of points could be in error independently, without accounting for the intersection of those 

error events. 

To illustrate, imagine your constellation points can potentially be in error if the received 

signal moves in various directions. The union bound method involves: 

1. Calculating 𝑄𝑄 �𝐷𝐷𝑖𝑖𝑖𝑖
2𝜎𝜎
� for each possible pair of constellation points. 

2. Summing these probabilities across all pairs, assuming each pair of points is considered 

in isolation, without worrying about overlapping regions. 

In essence, you are adding up the probabilities of errors for each possible pair of points and 

ignoring the complexity of overlapping error regions. This approach simplifies the 

calculation by avoiding the need to account for overlapping error events, making it more 

manageable while still providing a useful upper bound on the error probability. 

The rationale behind this approach is grounded in the properties of the Q function. Recall 

that the Q function has an exponential decay, meaning 𝑄𝑄 �𝐷𝐷𝑖𝑖𝑖𝑖
2𝜎𝜎
� decreases exponentially as 

𝐷𝐷𝑖𝑖𝑖𝑖  becomes large. When D is very large, the term 𝑒𝑒−
𝐷𝐷2

2𝜎𝜎2  becomes exceedingly small. 

Consequently, in many cases, only a few terms in the summation are significant, while the 

rest contribute negligibly to the overall error probability. 

For example, in the case of QAM-16, some errors will have a considerable impact, while 

others will be so distant that they don't significantly affect the probability of error. This is 



particularly true when the distance between points is several times greater than the distance 

between nearest neighbors. Hence, the union bound simplifies the calculation by allowing 

us to focus on the most impactful terms. 
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The union bound provides a reasonably tight approximation, especially for high signal-to-

noise ratios (SNRs). In high SNR scenarios, even small changes in distance become 

insignificant because the Q function's values for large arguments are very small. Thus, 

approximating the symbol error rate using the nearest neighbors becomes effective.  

To apply the nearest neighbor approximation, you: 

1. Identify the nearest neighbors for each constellation point. 

2. Calculate the average number of nearest neighbors. 

3. Multiply this average by 𝑄𝑄 �𝐷𝐷min
2𝜎𝜎
�, where 𝐷𝐷min is the minimum distance between nearest 

neighbors. 



For instance, in the QAM-16 constellation, some points might have two nearest neighbors, 

others three, and some four. By averaging these values and using 𝐷𝐷min , you get an 

approximation for the symbol error rate. In the example provided, this yields an error 

probability of approximately 3 ⋅ 𝑄𝑄 � �𝐸𝐸𝑠𝑠
�5𝑁𝑁0

�.  

This approximation works well for high SNR scenarios but remember that it is not an exact 

bound but rather an estimate. At lower SNR levels, this approximation may not be as 

accurate.  

To summarize, one practical approach for calculating the symbol error rate in various 

scenarios is to simplify the process by using a simulation-based method, specifically the 

Monte Carlo method. This involves generating numerous constellation points, applying 

Gaussian noise to each, and then determining the fraction of symbols that are correctly and 

incorrectly detected. This method will be employed in our analysis of Bluetooth radio 

systems, as it effectively estimates the symbol error rate without the need for complex 

calculations. 

Monte Carlo simulations are particularly useful when calculating accurate symbol error 

rates is complex and cumbersome. They provide a straightforward and practical solution 

for assessing performance. 

Let’s review what we’ve covered so far. We’ve calculated the symbol error rate for several 

key constellations, considering how the arrangement and spacing of constellation points, 

along with the noise, influence the error rate. Whether you use a real or complex 

constellation, the configuration and minimum distance between points are crucial factors 

in determining the symbol error rate. 

For more intricate constellations, you can apply the union bound and nearest neighbor 

approximation to estimate the symbol error rate. In the next lecture, we will build on this 

knowledge and explore bit error rates. This is important because not all symbol errors 

translate directly into bit errors, and we’ll examine these differences in detail. Thank you.  


