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Signal-to-Noise Ratio and Symbol Error Probability - Part 1 

Welcome to this lecture on Digital Communication using GNU Radio. I’m Kumar Appiah 

from the Department of Electrical Engineering at IIT Bombay. In this lecture, we will 

continue our exploration of demodulation, focusing on how to compute symbol and bit 

error rates for various modulation formats. 
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To set the stage, over this lecture and the next, we will cover several key topics: 

1. Signal and Noise Energy: Understanding the relationship between these elements and 

their impact on communication performance. 



2. Symbol and Bit Error Probabilities: Analyzing how different modulation formats 

affect the likelihood of symbol errors. 

3. Gray Coding: Delving into bit error rates and examining techniques like Gray coding 

to optimize performance and minimize error rates. 

4. Examples for Common Constellations: Reviewing common constellations such as 

Pulse Amplitude Modulation (PAM) and Quadrature Amplitude Modulation (QAM) 

through practical examples. 

An essential point we covered in previous lectures is that the performance of a 

communication system is influenced not just by the signal energy or noise energy 

individually, but by the signal-to-noise ratio (SNR), the ratio of signal power to noise 

power, or signal energy to noise energy. Hence, accurately computing and characterizing 

both signal and noise energy is crucial. 
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Regarding noise energy, we have previously explored this in the context of signal space 



and the projection of noise onto signal spaces and orthogonal basis signals. For signals, we 

apply a similar concept, but we will formalize the assumptions for this lecture. 

Consider a signal waveform X(t), which can be expressed as ∑𝑠𝑠𝑘𝑘(𝑡𝑡 − 𝑘𝑘𝑘𝑘). This waveform 

consists of a sequence of individual waveforms, each containing information about a 

symbol. Specifically, each waveform sk(t - kT) can be represented as bk g(t - kT), where 

g(t) is the template pulse used by the transmitter. For simplicity in this discussion, we will 

assume g(t) is our general pulse shape. 
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In digital communication, each symbol sk conveys a different information value bk. To 

compute the energy of a symbol, we need to consider the properties of bk and g(t). 

Specifically, if 𝑏𝑏𝑘𝑘 ⋅ 𝑔𝑔(𝑡𝑡) represents the information contained in x(t) about the symbol, we 

need to account for the energy of this component. 

Typically, symbols might overlap or interact, such as when using a sinc pulse, which spans 

across multiple symbols. However, for simplicity, we assume that the energy of each 

symbol is additive and independent of others. For example, in matched filtering scenarios, 



if s(t) is represented by a series of symbols like b0, b1, b2, and b3, and if you perform 

matched filtering, you're convolving the signal with a rectangular function. 
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To compute the energy of a symbol, we consider the energy contributions of each 

component: 

• The energy of b0 is |𝑏𝑏0|2 ⋅ 𝐸𝐸𝑔𝑔, 

• The energy of b1 is |𝑏𝑏1|2 ⋅ 𝐸𝐸𝑔𝑔, 

• And so forth. 

Here, Eg represents the energy of the pulse g(t). If we assume g(t) has unit energy, the 

energy of the signal is simply the sum of the squared magnitudes of the coefficients: 

Energy = |𝑏𝑏0|2 + |𝑏𝑏1|2 + |𝑏𝑏2|2 + 

This assumes that the signals s0 and s1 are orthogonal. For instance, s0 could be a rectangle 

pulse from 0 to T with amplitude b0, while s1 extends from T to 2T with amplitude b1. 



These signals are orthogonal by definition. 

(Refer Slide Time: 09:29) 

 

If we assume that the base pulse is a rectangular function with unit energy, the energy 

calculation holds true. To verify this, you can integrate the pulse energy to confirm. 

In more complex scenarios, like using sinc functions, which carry information over an 

extended period, we can still apply the concept of orthogonality. Although sinc functions 

extend infinitely, they exhibit a form of orthogonality similar to rectangular pulses. If you 

integrate the product of a sinc function sinc(𝑡𝑡 − 𝑘𝑘𝑘𝑘)  and another sinc function 

sinc(𝑡𝑡 − 𝑙𝑙𝑘𝑘), scaled appropriately, the result is 𝑘𝑘 ⋅ δ𝑘𝑘𝑘𝑘. This indicates that integrating a sinc 

function with itself gives a certain energy, while integrating two sinc functions that are 

offset by T results in zero. Thus, sinc functions demonstrate time orthogonality similar to 

rectangular pulses. 

To accurately compute the energy of a signal, it's essential to understand the properties of 

the constellation, such as whether the symbols are BPSK, QAM-16, or another modulation 

format, as well as the base pulse g(t). In our example, we assumed that the base pulse has 



unit energy and scaled the sinc functions appropriately. This simplifies our calculation, so 

moving forward, we'll assume that the energy contained in our modulated signal is just the 

summation of 𝑏𝑏02,  𝑏𝑏12, and so forth. 

You might wonder about the situation when dealing with passband signals. Fortunately, 

even in passband, as long as the scaling factors like √2 are applied correctly, the energy of 

the passband signal remains consistent. Therefore, there is no confusion or additional 

complexity here. 

The energy of a signal, when normalized with a unit energy base pulse, is simply the sum 

of the squares of the constellation points bk. To compute the energy of a signal, take each 

realized constellation point b0, b1, b2, etc., square their magnitudes, and sum them up. This 

gives you the energy of the signal. However, as more symbols are added, the total energy 

will naturally increase. What we are more interested in is the average energy, or the power 

of the modulated signal, since this reflects the energy expenditure per symbol. 

To determine the average energy, consider a large block of symbols. Compute the total 

energy of this block and divide by the number of symbols, n. For instance, if n is 10,000 

or a million, you average the energy over these symbols. Mathematically, this is expressed 

as: 

Average Energy = lim
𝑛𝑛→∞

1
𝑛𝑛
�|𝑏𝑏𝑘𝑘|2
𝑛𝑛−1

𝑘𝑘=0

 

An important concept here is ergodicity. Even if you don't observe a vast sequence of 

constellation points, you can use ergodicity principles to compute the average energy. This 

means that time averages and frequency averages are equivalent. Therefore, to find the 

average energy of a constellation, you don't need to observe a massive sequence of points. 

Instead, you can probabilistically compute it directly from the constellation. Since these 

random processes generated by the symbols are ergodic, the average energy of your 

modulated signal will match the average energy calculated from the constellation itself. 

In this context, it is often much simpler to examine the constellation and determine the 



amount of energy it contains. Similarly, from our previous discussion on signal spaces, we 

know that nk samples are also i.i.d. Gaussian, thanks to the orthogonality principles we 

discussed. Therefore, we will assume that the signal-to-noise ratio (SNR) at the signal level 

is equivalent to the received constellation SNR. This is because the received constellation, 

which includes all the noise, is processed through operations like matched filtering and 

sampling. These operations do not introduce additional noise, so the SNR present before 

these operations will remain the same when you receive and decode the sampled points to 

determine which constellation symbol was transmitted. 

Now, let's move on to the basic calculation of symbol error rate. We will use our standard 

approach, which we discussed previously in the context of modulation and symbol errors. 

Suppose we have two constellation points with a distance d between them, and the noise 

has a mean of 0 and a variance of σ2. In this setup, the optimal decision region is determined 

by the distance from the received point to each of the constellation points. When dealing 

with Gaussian noise, the decision-making process involves minimizing the squared error 

between the received signal and each possible constellation point. 
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If the received point falls within the decision region closer to one constellation point, it is 

chosen as the transmitted symbol. However, if the Gaussian noise causes the received 

signal to fall into the decision region of the other point, an error occurs. The probability of 

making such an error is given by the function 𝑄𝑄 � 𝑑𝑑
2σ
� , where Q is the Q-function, 

representing the probability of error for both constellation points, assuming they are equally 

probable. 

To recall, the Q-function represents the tail probability of the Gaussian distribution. If we 

assume a Gaussian noise with mean 0, the error occurs if the realization of this Gaussian 

noise exceeds 𝑑𝑑
2
. To compute this probability, we need to evaluate the integral: 

�
1

√2πσ2

∞

𝑑𝑑
2

exp�−
𝑧𝑧2

2σ2
�𝑑𝑑𝑧𝑧 

To simplify this, we can use the substitution 𝑦𝑦 = 𝑑𝑑
σ
, leading to the integral: 

�
1

√2π

∞

𝑑𝑑
2σ

exp�−
𝑦𝑦2

2
�𝑑𝑑𝑦𝑦 

This integral evaluates the tail probability of the Gaussian distribution, which provides the 

symbol error rate for this modulation scheme. 

Let me just grab my eraser. I'll erase this part and then grab my pen. The integral we are 

discussing is: 

�
1

√2πσ2

∞

𝑑𝑑
2

exp�−
𝑦𝑦2

2σ2
�𝑑𝑑𝑦𝑦 

This represents the tail integral of a standard Gaussian distribution with unit variance and 

zero mean, and is known as the Q-function, denoted as 𝑄𝑄 � 𝑑𝑑
2σ
�. The Q-function is a crucial 

formula we will use whenever dealing with a pair of constellation points separated by a 

distance d. The Q-function 𝑄𝑄 � 𝑑𝑑
2σ
� gives us the probability of making an error when the 



two points are equally likely. For the purposes of our discussion, we will assume the points 

are equally likely. 

Now, let's examine a specific constellation, known as Binary Phase Shift Keying (BPSK). 

This constellation involves binary signaling with equal energy pulses. In this case, we 

choose the constellation points to be ±�𝐸𝐸𝑠𝑠, where Es represents the average energy per 

symbol. The reason for selecting ±�𝐸𝐸𝑠𝑠 is that, if the symbols are either +a or -a, and both 

appear with equal probability, then choosing ±�𝐸𝐸𝑠𝑠 ensures that the average energy per 

symbol is Es.  
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If you recall, our base pulse had unit energy, so the signal energy when sending +a is a2, 

and similarly, the signal energy when sending -a is also a2. Therefore, choosing the 

constellation points as ±�𝐸𝐸𝑠𝑠 means that each symbol has an average energy of Es. This 

choice ensures that the average energy for the transmitted symbols, whether +�𝐸𝐸𝑠𝑠  or 

−�𝐸𝐸𝑠𝑠, is Es, and each is sent with a probability of 0.5. 



For BPSK, the distance d between the constellation points is 2�𝐸𝐸𝑠𝑠 . Since the noise 

variance along each dimension is σ2 = 𝑁𝑁0
2

, the formula for the probability of error using 

the Q-function becomes: 

𝑄𝑄 �
2�𝐸𝐸𝑠𝑠

2σ
� = 𝑄𝑄 �

�𝐸𝐸𝑠𝑠
σ
� 

Here, σ2 is the noise variance, which is 𝑁𝑁0
2

 for each dimension. 

So, we refer to the noise variance as 𝑁𝑁0
2

. Plugging this into our Q-function formula, where 

d is 2�𝐸𝐸𝑠𝑠 and σ is �𝑁𝑁0
2

, we get: 

𝑄𝑄

⎝

⎛2�𝐸𝐸𝑠𝑠

2�𝑁𝑁02 ⎠

⎞ = 𝑄𝑄 �
�2𝐸𝐸𝑠𝑠
�𝑁𝑁0

� 

Thus, the symbol error rate for binary phase shift keying (BPSK) is: 

𝑄𝑄 �
�2𝐸𝐸𝑠𝑠
𝑁𝑁0

� 

It's worth noting that we chose our constellation points to be +�𝐸𝐸𝑠𝑠 and −�𝐸𝐸𝑠𝑠. If we had 

used a different constellation where one symbol is 0 and the other is �2𝐸𝐸𝑠𝑠, the energy 

calculations would be different. Specifically, if you use symbols 0 and �2𝐸𝐸𝑠𝑠, the average 

energy calculation would yield a different result. For instance, if α is the symbol and you 

want the average energy to be Es, you would need to set 𝛼𝛼 = �2𝐸𝐸𝑠𝑠. The distance d between 

the symbols in this case is �2𝐸𝐸𝑠𝑠.  

Choosing a constellation with a symbol at 0 and another at �2𝐸𝐸𝑠𝑠 will result in slightly 

poorer performance, with a higher symbol error rate compared to using ±�𝐸𝐸𝑠𝑠. Intuitively, 

given an energy budget, your goal should be to maximize the separation between 



constellation points. 
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Now, let’s examine PAM-4 (Pulse Amplitude Modulation with 4 levels). For PAM-4, the 

constellation typically looks like this: 

-3α, -α, α, 3α 

These points are equi-probable, and we want to find α such that the constellation has an 

energy Es.  

To do this, let’s calculate the average energy for the PAM-4 constellation. The energy for 

each symbol is: 

• For -3α: (-3α)2 = 9α2 

• For -α: (-α)2 = α2 

• For α: α2 

• For 3α: (3α)2 = 9α2 



Since each symbol is equally probable, the average energy is: 

1
4

(9α2 + α2 + α2 + 9α2) =
20α2

4
= 5α2 
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Setting this equal to Es, we get: 

5α2 = 𝐸𝐸𝑠𝑠 imples α = �𝐸𝐸𝑠𝑠
5

 

So, substituting 𝛼𝛼 = �𝐸𝐸𝑠𝑠
5

 gives us a PAM-4 constellation with an energy of Es. This 

calculation demonstrates that by choosing equi-probable symbols and spacing them 

symmetrically around zero, you can achieve a PAM-4 constellation with the desired 

energy. Any deviation from this configuration could result in inefficient power usage and 

a higher symbol error rate for the same Es. 

If you're given an Es and need to design a PAM-4 constellation to minimize the symbol 



error rate under equi-probable signaling, here's how you should arrange it. First, the value 

for α is �𝐸𝐸𝑠𝑠
5

. Therefore, your four constellation points should be: 

−3�
𝐸𝐸𝑠𝑠
5

,−�
𝐸𝐸𝑠𝑠
5

,�
𝐸𝐸𝑠𝑠
5

, 3�
𝐸𝐸𝑠𝑠
5
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I've written these points as: 

−3�
𝐸𝐸𝑠𝑠
5

,−�
𝐸𝐸𝑠𝑠
5

,�
𝐸𝐸𝑠𝑠
5

, 3�
𝐸𝐸𝑠𝑠
5

 

To verify that the average energy is correct, you square each point, sum them up, and then 

divide by 4. This is the same calculation we did with √5. For these points, the average 

energy calculation is: 



1
4

[(−3α)2 + (−α)2 + α2 + (3α)2] 

Substituting 𝛼𝛼 = �𝐸𝐸𝑠𝑠
5

, you get: 

1
4

[9α2 + α2 + α2 + 9α2] =
20α2

4
= 5α2 

Since 𝛼𝛼2 = 𝐸𝐸𝑠𝑠
5

, this simplifies to Es, confirming that the constellation points are laid out 

correctly to meet the energy requirement. 
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Next, let’s calculate the bit error rate. The edge symbol, −3�𝐸𝐸𝑠𝑠
5

, encounters a symbol error 

when it crosses the decision boundary, which is straightforward. However, for the second 

and third symbols, each can cross two decision boundaries: one to the left and one to the 

right, making the calculation trickier. 



For this PAM-4 constellation, let’s consider the symbol −3�𝐸𝐸𝑠𝑠
5

 and −�𝐸𝐸𝑠𝑠
5

. The distance d 

between these symbols is: 

𝑑𝑑 = 2 × �𝐸𝐸𝑠𝑠
5
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To find the symbol error probability, use the Q-function: 

𝑃𝑃𝑒𝑒 = 𝑄𝑄 �
𝑑𝑑

2σ�
 

Here, 𝜎𝜎2 = 𝑁𝑁0
2

, so: 

𝑃𝑃𝑒𝑒 = 𝑄𝑄

⎝

⎛
�2𝐸𝐸𝑠𝑠

5
�𝑁𝑁0

⎠

⎞ = 𝑄𝑄 �
�2𝐸𝐸𝑠𝑠
�5𝑁𝑁0

� 



This calculation is straightforward for the edge symbol. For symbols near −�𝐸𝐸𝑠𝑠
5

 and �𝐸𝐸𝑠𝑠
5

, 

you need to account for errors crossing two decision boundaries. Although I’ve drawn the 

decision regions unsymmetrically for clarity, they are symmetric in practice. To handle 

these errors, consider the two different probabilities of error for each scenario.  

When calculating the probability of error for a PAM-4 constellation, you must account for 

the different probabilities of error occurring due to crossing decision boundaries. These 

errors are mutually exclusive, so you can simply add the probabilities together. Here’s how 

you can approach this problem from first principles: 

Let's set up the problem: Suppose you have a Gaussian distribution centered around 0, and 

you're considering two key decision boundaries: −𝑑𝑑
2
 and 𝑑𝑑

2
. To compute the symbol error 

probability, you need to evaluate the probability that the Gaussian noise causes a symbol 

to cross these boundaries. 

The probability of symbol error in this scenario is given by: 

Probability of Error = �
1

σ√2π

∞

𝑑𝑑
2

𝑒𝑒−
𝑧𝑧2
2σ2 𝑑𝑑𝑧𝑧 + �

1
σ√2π

−𝑑𝑑2

−∞
𝑒𝑒−

𝑧𝑧2
2σ2 𝑑𝑑𝑧𝑧 

Here, the first integral covers the probability of crossing 𝑑𝑑
2
, and the second integral covers 

the probability of crossing −𝑑𝑑
2
. Combining these, you get: 

Probability of Error = 2�
1

σ√2π

∞

𝑑𝑑
2

𝑒𝑒−
𝑧𝑧2
2σ2 𝑑𝑑𝑧𝑧 

Recognize that this integral is just the Q-function, so: 

Probability of Error = 2 ⋅ 𝑄𝑄 �
𝑑𝑑

2σ�
 

Given that the distance d between constellation points is �2𝐸𝐸𝑠𝑠
5

 and the noise variance σ2 is 



𝑁𝑁0
2

, you substitute these values into the Q-function formula: 

Probability of Error = 2 ⋅ 𝑄𝑄

⎝

⎛
�2𝐸𝐸𝑠𝑠

5

�𝑁𝑁02 ⎠

⎞ 

Thus: 

Probability of Error = 2 ⋅ 𝑄𝑄 �
�2𝐸𝐸𝑠𝑠
5�𝑁𝑁0

� 

Now, for the specific symbols −3�𝐸𝐸𝑠𝑠
5

 and 3�𝐸𝐸𝑠𝑠
5

, each can cross one decision boundary, 

yielding an error probability of: 

𝑄𝑄 �
�2𝐸𝐸𝑠𝑠
5�𝑁𝑁0

� 

For the symbols −�𝐸𝐸𝑠𝑠
5

 and �𝐸𝐸𝑠𝑠
5

, there are two potential errors because they can cross two 

decision boundaries. Both scenarios have the same error probability: 

𝑄𝑄 �
�2𝐸𝐸𝑠𝑠
5�𝑁𝑁0

� 

Thus, the total symbol error probability for this constellation is: 

Probability of Error = 2 ⋅ 𝑄𝑄 �
�2𝐸𝐸𝑠𝑠
5�𝑁𝑁0

� 

Therefore, the probability of symbol error is not uniform across all constellation points. 

Some points may have higher or lower symbol error rates depending on their positions and 

the distance between them. 

To determine the average symbol error rate, you need to multiply the probability of error 



for each constellation point by the probability of that constellation point occurring. In our 

case, since all constellation points are equally likely, the average symbol error rate can be 

calculated as follows: 

Average Symbol Error Rate =
1
4
𝑄𝑄 �

�2𝐸𝐸𝑠𝑠
�5𝑁𝑁0

� +
1
4
𝑄𝑄 �

�2𝐸𝐸𝑠𝑠
�5𝑁𝑁0

� +
1
2
𝑄𝑄 �

�2𝐸𝐸𝑠𝑠
�5𝑁𝑁0

� 
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After performing the computation, you will find that the average symbol error rate is: 

3
2
𝑄𝑄 �

�2𝐸𝐸𝑠𝑠
�5𝑁𝑁0

� 

It’s not surprising to see that the probability of symbol error for PAM-4, given the same 

energy Es and noise variance N0, is significantly higher compared to BPSK. This higher 

error rate is due to the fact that, within the same energy budget, PAM-4 uses more symbols. 

Thus, there is a greater chance of error when the signal-to-noise ratio (SNR) is the same. 

For BPSK, the SNR is �2𝐸𝐸𝑠𝑠
𝑁𝑁0

, and with PAM-4, the increased number of symbols 



(specifically, a factor of 2
5
) leads to a larger integral and a higher error rate. Consequently, 

the symbol error rate for PAM-4 is notably higher than for BPSK. 

As you move to more complex constellations like PAM-8 or PAM-16, the symbol error 

rates will further increase, and such constellations will only perform well under very high 

SNR conditions. 

In this lecture, we’ve examined the symbol error rate probabilities for BPSK and PAM-4, 

computed the energy of constellations, and understood how to draw decision boundaries 

correctly for accurate symbol error rate calculations. In the next lecture, we will extend 

these concepts to quadrature amplitude modulation (QAM) and other constellations, and 

explore bit error rates as well. Thank you. 


