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Histograms in GNU Radio 

In this lecture, we will introduce the QT-GUI histogram sink in GNU Radio, a powerful 

tool that allows you to count and visualize the distribution of values within a specified 

range. This histogram sink is particularly useful for visualizing the probability distribution 

function (PDF) of a data source or a sequence, which can be invaluable when studying the 

effects of noise on signal processing, such as in evaluating symbol error rates. 

(Refer Slide Time: 03:27) 

 

We'll leverage this tool to observe how different types of noise, such as Gaussian noise, 

manifest in terms of the range of values they produce. This will help us better understand 



the impact of noise on signal processing performance. 

To start, let’s dive into the histogram sink’s evaluation, which will be essential when 

performing various measurements, including symbol error rate analysis. Begin by pressing 

Ctrl+F (or Cmd+F) and typing "histogram" or "HIST" to locate the histogram sink. Drag 

and drop it into your workspace. 
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The histogram sink comes with several key parameters. One important parameter is the 

number of points, which determines how the histogram bins are created and how the values 

are counted. You might already be familiar with parameters like grid and auto scale. 

There’s also an "accumulate" option, which we’ll discuss in more detail later. Additionally, 

you’ll find "min x-axis" and "max x-axis" settings, which define the range of values over 

which the histogram is calculated. 

To better understand how this works, let's go through an example. We’ll start by adding a 

throttle block. Again, use Ctrl+F (or Cmd+F) to search for "throttle." Once found, add it to 

your workspace and configure it as a float type. I've made a small adjustment here: setting 



the sampling rate to 1920.00 to make the simulation run a bit faster. 

Finally, we’ll introduce a vector source. Search for "VEC" using Ctrl+F (or Cmd+F), add 

the vector source, and double-click it to configure it as a float. I’ve selected a specific 

vector with values [0, 2, 0.7, 1.5, 0.7]. This four-length list will repeat continuously since 

we’ve set the repeat option to "yes." 

With this setup, we'll be able to explore how the histogram sink in GNU Radio can 

effectively visualize and analyze the distribution of these values, giving us deeper insights 

into the behavior of signals under various noise conditions. 

After configuring the vector source and clicking 'OK,' I’m ready to connect it to the throttle 

and then link the throttle to the histogram sink. Once I execute this flow graph, the resulting 

plot displays distinct peaks, one around the value 0.2, another at 0.7, and a third at 1.5, 

though the peak at 1.5 is barely visible. 

The reason the 1.5 peak is less prominent is that the value range needs adjustment for better 

visibility. To address this, let's modify the minimum value to -0.5 and the maximum value 

to 2. Now, when I re-run the flow graph, you’ll observe three clear peaks: one near 0.2, 

another close to 0.7, and the final one at approximately 1.5. 

Next, let's analyze the heights of these peaks. The peak near 0.2 reaches a height of about 

256. If you zoom in, you’ll notice that this height is indeed around 256. The peak at 0.7 is 

taller, with a height of 512, while the peak at 1.5 returns to 256. But what does this signify? 

The histogram sink processes 1024 values and counts how many fall within specific bins, 

or intervals along the x-axis. In our case, these bins span from -0.5 to 2, covering a range 

of 2.5 units. This range is divided into 100 equally spaced bins, each covering 2.5
100

= 0.025 

units. Every time a value from our vector source falls within a bin's range, the count for 

that bin increases by one. 

Given our input values, 0.2, 0.7, and 1.5, each appearance of 0.2 increases the count in its 

corresponding bin by one. The same applies to 0.7 and 1.5. Since our vector source repeats 

256 times to produce a total of 1024 points, we end up with exactly 256 occurrences of 0.2, 



256 of 1.5, and 512 of 0.7, because 0.7 appears twice as often as the other values. 

Thus, the bin containing 0.2 shows a height of 256, the bin for 0.7 shows 512, and the bin 

for 1.5 shows 256, perfectly reflecting the distribution of values in our input data. 

When you add these values, you get a total of 1024. Now, if you want to mix things up, 

you can change this number to something larger, let's say 5000. With 5000 samples, you 

would see that 2500 of them are 0.7, and 1250 each are 0.2 and 1.5. Essentially, the 

histogram counts how often each of these numbers occurs. 

However, this particular vector source might not be very interesting because we already 

know in advance that it will send 0.2, 1.5, and 0.7, with 0.7 appearing twice as often as the 

others. The outcome is predictable and not particularly insightful. But where a histogram 

sink truly shines is in scenarios where you want to visualize the distribution of values when 

you don't have prior knowledge of what those values might be. 
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For instance, let’s say you have a random source. What kind of values does this random 



source generate? This could be really useful to visualize. So, let's remove the vector source 

by selecting it and hitting delete, and instead, we’ll add a random source. 

To do this, press Ctrl+F and type "random" (R, A, N, D). We'll select a random source, 

which outputs integers. The minimum value is set to 0, and the maximum value is set to 2. 

However, keep in mind that the outputs will always be 0 and 1 because the maximum value 

of 2 is not actually output. Instead, the source only emits 0s and 1s. 

To verify whether we’re getting an even distribution of 0s and 1s, let's create a histogram 

of this output. We'll set the x-axis range from -0.5 to 2, which will cover the values 0 and 

1. Next, we need to convert this random source to the correct data type. Press Ctrl+F (or 

Cmd+F) and search for "int to float." Grab the "int to float" block, place it between the 

random source and the histogram sink, wire everything up, and now, when you observe the 

histogram, you'll see the distribution of 0s and 1s clearly. 
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I estimate that you have approximately 2450 of one value and 2550 of another. These 

numbers aren’t exact because, in any random simulation, even when values are equally 



likely, you won’t get an exact 50-50 split. The results will vary slightly. Here, we’re dealing 

with 1000 samples, but when we increase the number of points to 5000, let’s reset it back 

to 1000 and execute the flow graph. 

You’ll notice that the distribution is about 500 for each value, which makes complete sense. 

Now, let’s experiment a bit. We’ll modify the random source to generate values from 0 

through 4 and adjust our x-axis range from -0.5 to 4.5. Now, with 1000 points being fed 

into the histogram sink, when you execute the flow graph, you should see a structure 

emerge. Ideally, with 1000 points, each value should appear roughly 250 times, but in this 

realization, there were more 2s and 1s compared to 0s. 

Let’s run the simulation again. This time, you might observe more 1s than before. This 

slight variation is something to be aware of, it’s due to the size of the sample set chosen. 

Another key point is that the random source generates 1000 samples and then keeps 

repeating them, which is why the values don’t change as more cycles are processed.  
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If you had set the maximum to 5 to include the fourth value, you would start noticing gaps 



in the distribution. While this can be explained through probability theory, the more critical 

insight here is that a random source isn’t ideal for generating something like noise or a 

continuous pattern. It will only generate a fixed number of samples, like 1000, and keep 

repeating them.  

In communication simulations, you often need a continuously varying set of random 

values, so using a random source as a noise generator isn’t advisable. Let’s now transition 

to using an actual noise source for our analysis. To do this, I’ll delete the random source 

and the int-to-float block. Then, I’ll press Ctrl+F (or Cmd+F) and type "noise" to bring in 

a noise source for our simulation. 

Let's double-click on the noise source. We'll start by setting the output type to float and 

choose the uniform distribution. The amplitude is set to 1. In the context of GNU Radio, a 

uniform noise source with an amplitude of 1 will generate random values uniformly 

distributed between -1 and 1. Let's modify this range slightly, setting it to -1.2 to 1.2, and 

then run the flow graph.  
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You'll notice that the histogram displays some movement. This movement occurs because 

each time the noise source generates a new set of values, a new histogram is constructed. 

Essentially, you're seeing one histogram for every 1000 points generated by the noise 

source. However, with only 1000 points, the histogram doesn't appear very stable or 

consistent. 

To improve this, we can increase the number of points used to construct the histogram. 

Let's change it to 100,000 points. As expected, the histogram updates more slowly, but the 

result is much cleaner and more stable. 

Another key detail to note is that the height of each bin in the histogram represents the 

actual count of points falling into that bin. To understand this concept more clearly, let's 

try something different. We'll reduce the number of bins to just two and then execute the 

flow graph again.  
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With only two bins, you'll observe that the values cluster into bins near -2 and 0, which 

isn't the desired outcome. So, let's adjust this. We'll increase the number of bins to four, or 



perhaps even ten, for better granularity. Now, when we run the flow graph, you'll see that 

while most bins show a uniform distribution of values, there are a couple of bins with 

noticeably different counts. 

This discrepancy might seem surprising, especially given that we're using a uniform noise 

source where you would expect the values between -1 and 1 to be evenly distributed across 

the bins. So, what could be causing this? 

Well, let's try a little trick to investigate further. 

Let's double-click on the histogram sink and adjust the settings. First, set the minimum 

value to -1 and the maximum value to 1. We currently have 10 bins, which means that the 

interval between -1 and 1 is divided into 10 equal parts. Each of these bins should ideally 

contain about 10,000 values, assuming we have a total of 100,000 points. 

Now, let’s examine the output. When you execute the flow graph, you'll notice that one bin 

appears to have a height that seems appropriate, but another shows a noticeable drop. 

What's going on here? To understand this, we need to take a closer look at the exact bin 

placements. 

Double-click on the histogram sink again, go to the configuration settings, and activate the 

marker for line 1. Let's make this marker something clearly visible, like an "X" cross, and 

click "OK." 

Remember, we asked GNU Radio to create 10 uniformly spaced bins between -1 and 1. 

However, when you execute the flow graph, you'll see that the crosses, which represent the 

bin centers, are not exactly where we expected them to be. For example, one cross might 

be at 0.88, another at 0.66, and so on. If you move to the first bin, it might be around -1.1. 

What GNU Radio is doing here is slightly different from what you asked for. Instead of 

strictly starting at -1 and ending at 1, it begins slightly to the left of -1 and extends slightly 

to the right of +1. As a result, the bin centers are not at the expected intervals. 

For instance, the bins might actually be at -1.09, -0.88, -0.66, -0.44, -0.22, and so on. This 

means that the bins are not neatly aligned between -1 and 1 as you would expect if each 



bin were exactly 0.2 units wide. Instead, GNU Radio’s bins are slightly offset, causing 

some of the unexpected results you’re seeing. 

For example, if you look at the last bin, which might span from 0.88 to 1.11, you’ll notice 

that 1 falls right in the middle of this bin. Similarly, -1 might fall right in the middle of its 

respective bin, which can result in some strange behavior due to the way floating-point 

arithmetic works. This can cause the software to choose one bin over another, leading to 

the inconsistencies you've observed. 

This situation is a result of the way GNU Radio handles bin partitioning, and it's important 

to be aware that the actual bin intervals might not align perfectly with what you intended. 

However, the qualitative plot is still useful, and this issue becomes less noticeable when 

you increase the number of bins, giving you a better approximation of the histogram. 

Finally, there’s an option called "Accumulate." What this does is, after computing the 

histogram once with 100,000 points, it continues to add the counts from the next 100,000 

points to the existing histogram, effectively accumulating the data over time. 
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To put it another way, let's say out of 100,000 samples, a particular bin receives 2,000 

values. In the next set of 100,000 samples, the same bin might receive 2,010 values. GNU 

Radio then adds these together, resulting in a total of 4,010 for that bin. Consequently, 

you'll notice that the y-axis on the histogram consistently shows an upward trend as values 

accumulate. 

For instance, if you look closely at the y-axis, you’ll see this continuous increase, clearly 

demonstrating the uniform nature of the source. It’s apparent that this is a uniform source, 

which becomes particularly useful when you need a qualitative but more accurate 

representation. Since the counts are constantly being added, the accumulation leads to a 

more stable histogram. Now, let’s proceed by removing the accumulation. 

Next, we'll make a few adjustments. To illustrate, let’s consider how you can create an 

exponential random variable from a uniform random variable. This is typically done by 

taking the logarithm of a uniform random variable whose values range from 0 to 1. To see 

if this can be achieved in our setup, we'll apply a little trick. The uniform noise source 

we’re using currently generates values between -1 and 1. 

Let’s shift these values so they fall between 0 and 1. To do this, press `Ctrl + F` to open 

the command finder and search for "Add." Select "Add Const," as we'll be adding a 

constant. Double-click to set the constant value to 1, and then multiply by a constant to 

divide the result by 2. Again, use `Ctrl + F` to search for "Multiply Const." Set the 

multiplier to 0.5. 

Now, after these adjustments, we should have a uniform random variable with values 

between 0 and 1. As you can see, the values are now concentrated within this range. Next, 

let's take the negative natural logarithm of this modified random source. To do this, first, 

delete the existing wire. Then, press `Ctrl + F` and search for "Log." You might select 

"Log10" from the options. 

Double-click on "Log10" to access the parameters, where you'll find options for "n" and 

"k." According to the documentation, the output is calculated as 𝑛𝑛 × log10(input) + 𝑘𝑘. 

Since we want the natural logarithm but only have the base-10 logarithm available, we 



need to divide this by the logarithm of e (base-10).  

To do this, we could manually calculate the constant, but to avoid errors, let's use NumPy. 

Press `Ctrl + F` again, search for "Import," and select "import numpy." Double-click to 

import it as `np`. Now, in the log function, enter the constant as − 1
np.log10(np.exp(1)). This 

operation effectively computes the natural logarithm and multiplies it by -1, which is what 

we need for an exponential distribution. 
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After connecting everything and executing the flow graph, you should see a histogram that 

exhibits an exponential distribution. Adjust the intervals to range between 0 and 5, and 

upon re-execution, the histogram should clearly resemble the probability density function 

(PDF) of an exponential random variable. Finally, let's make a slight modification to 

explore other random sources, particularly to observe how Gaussian distributions appear. 

Let's start by deleting the previous setup and reconnecting our noise source directly. This 

time, we’ll change the noise source to a Gaussian distribution. After selecting the Gaussian 



option, click "OK." We'll also double-click to check the settings and ensure that "Auto 

Scale" is enabled, which is fine for now. Let's set the number of bins to 100 and adjust the 

range from -4 to 4. Now, when we run the flow graph, you'll notice that we get a smooth, 

bell-shaped curve, characteristic of a Gaussian distribution. 
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The reason the plot appears to fluctuate is that every time the Gaussian source generates 

new data points, a new histogram is created for every 100,000 points. Therefore, the bell 

shape isn't perfectly consistent, reflecting the variability in the sequence of random 

variables. It's typical to adjust some parameters of the Gaussian distribution, such as 

variance or standard deviation.  

As you may recall from our previous discussions, when a Gaussian distribution has a mean 

of zero, as it does in this case, you can alter the standard deviation by adjusting the 

amplitude. Let's add a control for this. Press `Ctrl + F` to open the command finder and 

search for "Range." Select "QtGyRange," double-click, and label it "NOISESTD" for noise 

standard deviation. We'll set the default value to 1, with a start value of 0, a stop value of 



3, and increments of 0.1. Before proceeding, let's ensure that the amplitude is set to 

"NOISESTD." 

Now, when we execute the flow graph, you'll see a range control on the interface, allowing 

us to observe the same behavior as before. Let's experiment by setting the range to 0. When 

you do this, the Gaussian source effectively outputs its mean, which is 0, so all 100,000 

values fall into a single bin at 0. As we begin to increase the noise standard deviation, say 

to 0.1, you'll notice that the plot becomes more stable, with only a few bins receiving 

values. 
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As we continue to increase the standard deviation, say to 0.6, the Gaussian distribution 

becomes more apparent, activating more bins. In the lower bins, the probability of 

receiving values is low but not zero, so occasionally, you'll see values in these bins. These 

are what we might refer to as "rare occurrences." As we further increase the standard 

deviation, you'll notice that these rare occurrences become more frequent. Typically, most 

of the Gaussian distribution is concentrated within the range of -3σ to 3σ. 



If we keep increasing the standard deviation, you'll observe that values start falling into 

bins beyond 1 or 2σ, or simply beyond 1 or 2 in this setup, since we are scaling the standard 

deviation. For example, if we increase the standard deviation to 2, the variance becomes 4, 

and the Gaussian distribution spreads over a broader range of values. In the context of a 

communication system, this would correspond to a scenario with higher noise levels, 

increasing the likelihood of symbols being corrupted or shifted out of their correct decision 

regions due to this noise. 

Thus, we can effectively visualize a Gaussian distribution using a histogram. However, 

with higher standard deviations, the distribution of values across bins becomes less stable 

as the values are spread out more widely. To address this, you can enable accumulation. 

Let's try increasing the standard deviation to 2 and observe the effect. But there's a potential 

issue, if you accumulate values with a standard deviation of 1 and then change it to 2, the 

histogram will no longer accurately represent the distribution.  

To avoid this, it's best to set the default standard deviation to 2 before visualizing the 

distribution. This ensures that the histogram accurately reflects the Gaussian distribution 

under the specified conditions. 

When you perform this operation, you'll notice that the output stabilizes, and the resulting 

shape corresponds to the equation 𝑒𝑒−
𝑥𝑥2

2𝜎𝜎2. To determine the value of σ, you can leverage the 

fact that the peak value is proportional to 𝑘𝑘 × 𝑒𝑒−
𝑥𝑥2

2 , where k represents a constant. By 

finding this constant k, you can use the equation 𝑘𝑘 × 𝑒𝑒−
𝑥𝑥2

2σ2 = 60,000 to obtain a reliable 

estimate of the standard deviation, σ. 

Now, let’s illustrate this with an example. Suppose we determine k to be 129,560. If we 

then consider a point where x equals -2.7, we can substitute these values into the equation, 

129,560 × 𝑒𝑒−
2.72

2σ2 = 52,100. 

Solving this equation will give us the value of σ, which can subsequently be used to 

estimate the variance. 



In this manner, the histogram proves to be a valuable tool for visualizing the characteristics 

of a random source, allowing us to effectively count the ranges of values it can assume and 

derive an estimate of its probability distribution. In future lectures, we will continue to 

employ histograms to calculate various statistics related to the values received by a 

communication system's receiver. 

In this lecture, we have explored the use of histograms in GNU Radio. Specifically, we 

have examined the size of the histogram sink in terms of the number of values it can 

accommodate, the impact of bin selection, and how this tool can be used to visualize 

random variables such as noise samples or received symbols. Your visual inspection of the 

histogram will provide critical insights into the performance of your system, a method we 

will continue to refine and utilize in upcoming discussions. 


