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Extending GNU Radio Features using Python 

Welcome to this lecture on Digital Communication using GNU Radio. Up to this point, 

you've been working with various blocks in GNU Radio to accomplish different 

functionalities. However, we haven’t delved deeply into the inner workings of these blocks. 

While we have a general idea, such as filtering blocks performing convolution or 

amplification blocks multiplying samples, we haven’t explored their details. 
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Sometimes, you might find that implementing a specific functionality using GNU Radio’s 

built-in blocks can be cumbersome. In such cases, it might be more efficient to express that 



functionality with a bit of Python code. This lecture will introduce you to the concept of 

extending GNU Radio with Python blocks, focusing on how Python can be used to achieve 

functionality that may be complex or inefficient to implement with built-in blocks alone. 

GNU Radio blocks are generally written in C++ for performance reasons, but Python can 

be a powerful tool for adding simpler functionality. By incorporating Python blocks, you 

can extend GNU Radio’s capabilities with minimal effort and just a few lines of code.  

In this session, we will explore one of GNU Radio's most powerful features: the embedded 

Python block. This feature allows you to create custom blocks with Python, providing a 

compact and flexible way to achieve powerful transformations and operations without 

relying solely on pre-built GNU Radio blocks. This approach is especially useful for 

operations that are challenging to implement with built-in blocks. 
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Let’s dive into how you can use embedded Python blocks to extend GNU Radio’s 

functionality effortlessly. 



Let's walk through using the embedded Python block in GNU Radio. Start by pressing 

`Ctrl-F` (or ̀ Command-F` on a Mac) and typing "block" to locate the Python block found 

under Core > Miscellaneous. Drag this block onto your workspace; it’s labeled as the 

"Embedded Python Block." 

Now, let’s set up a basic flowgraph. Add a throttle by using `Ctrl-F` (or `Command-F`) 

and searching for "throttle." Next, add a signal source and a time sink in a similar fashion. 

Connect these components as follows: the signal source to the embedded Python block, 

and then the embedded Python block to the throttle and the time sink. 

Double-click the embedded Python block to open its configuration window. Set the 

example parameter to 1.0 and try to run the flowgraph. You’ll encounter an error stating, 

"Block example.py must begin with a letter and may contain letters, numbers, and so on." 

This indicates that the current block setup is not correctly configured. 

To resolve this, double-click the embedded Python block again and select "Open in Editor." 

This action will open the block in your default Python editor. Here, you'll see boilerplate 

code, including a string at the beginning used for documentation purposes. In Python, such 

strings are typically used for documentation within code. 

The embedded Python block's code is designed to be instantiated by GNU Radio 

Companion. When you save this file, GNU Radio Companion will use the first class it 

finds to determine the block’s ports and parameters. These parameters should all have 

default values. 

You can now remove the initial documentation string. The key point here is that the class 

defined in this file serves as the Python object that GNU Radio Companion uses to interact 

with your block. This class definition is essential for the functionality of the embedded 

Python block. 

The embedded Python block is a subclass of `gr.sync_block`, which means it processes 

samples at a consistent rate: it takes in samples and produces outputs at the same rate. In 

GNU Radio, there are other base classes such as `basic_block`, `decim_block`, and 

`interp_block`. The `basic_block` class is more general, while `decim_block` and 



`interp_block` are used for decimation and interpolation, respectively, which involve 

producing fewer or more samples than the input. 

Let's clean up the initial boilerplate code. The block currently includes a string labeled 

"embedded Python block example," and a basic example for multiplying by a constant. If 

we dive into the code, we see the `__init__` method, also known as the constructor. This 

method is crucial as it initializes the block when GNU Radio first creates the object. 
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You need to use `gr.sync_block.__init__` and `self` to call the sync block's initialization 

function. For clarity, let’s rename "embedded Python block" to "myamplifier."  

The `insig` and `outsig` attributes specify the data types for input and output samples, 

respectively. In this case, both `insig` and `outsig` are set to `np.complex64`, which we'll 

keep unchanged. 

The `self.param` assignment is used to store parameters passed from GNU Radio 

Companion. For instance, if you have a parameter named `example_param` with a value 



of 1.0, you should store it as `self.example_param = example_param`. This approach 

retains the parameter value within the object instance. 

Now, let’s adjust the parameter name from `example_param` to `amplification`. Make 

the corresponding changes throughout the code: update `example_param` to 

`amplification` in the class definition, and ensure all references to the parameter are 

updated accordingly. 

Finally, we have the `work` method. This method is central to the functionality of your 

block, handling all the processing tasks. 

In GNU Radio, input and output items are not strictly numpy arrays; rather, they are like 

lists of numpy arrays. Each list contains elements corresponding to the block's dimensions. 

For example, if `insig` is specified as `np.complex64`, it implies that the input items 

contain a single element, which is a numpy array. Similarly, if `outsig` is `np.complex64`, 

it means the output items also contain a single element, which is a numpy array. 
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This notation allows you to access and modify the first element of these lists directly. For 

instance, the line: 

output_items[0][:] = input_items[0] * self.amplification 

This line writes into the first output item by multiplying the first input item by the 

`self.amplification` parameter. The `[:]` notation is used to replace the content of the 

output item with the computed values. The `return len(output_items[0])` statement 

specifies to GNU Radio how many items are being returned. As a sync block, it is expected 

that the number of output items matches the number of input items for each stream. 

After making these changes, save and exit the editor, and execute the block. You'll observe 

that it processes the complex signal correctly, as indicated by the red and blue traces. If 

you adjust the amplification parameter to 2, you should see the output appropriately 

amplified. 
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However, if you want the amplifier to work with real samples instead of complex ones, 



you need to modify the block accordingly. This adjustment ensures that the amplification 

is applied to real-valued signals rather than complex ones, avoiding the combined effects 

of cosine and sine components. 

To adapt the block for real signals, follow these steps: double-click the block, select "Open 

in Editor," and change the data types from `np.complex64` to `np.float32`: 

self.insig = np.float32 

self.outsig = np.float32 

You don't need to modify the rest of the code, as GNU Radio will handle the conversion 

of these numpy arrays to float arrays instead of complex arrays. Save the changes and click 

"OK." Notice that GNU Radio has disconnected the blocks due to the type change, with 

the color now showing orange to indicate that the data type is float. 
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Next, update all the related blocks to use float types: start with the Signal Source, then 

adjust the Throttle, and finally modify the Time Sink. For the Time Sink, add a second 



input. Connect the original input to the first and the amplified signal to the second. When 

you run the flow graph, you'll observe that the second signal is amplified by a factor of 2 

as expected.  

To further enhance functionality, let's introduce a variable amplification factor. Press 

Ctrl+F (or Command+F), search for "range," and select a QTGUI Range widget. Double-

click it and rename it to "AMPL" for convenience. Set its default value to 1, with a range 

from 0 to 10 and a step size of 0.1. Update the block code to use "AMPL" instead of a fixed 

amplification value: 

self.ampl = self.AMPL 

Execute the flow graph again. When you adjust the amplification using the QTGUI Range, 

you'll see that the signal's amplitude changes accordingly. If you set the amplification 

below 1, the signal's amplitude decreases. To add more parameters, simply double-click 

the "My Amplifier" block and make further adjustments as needed. 

You can open the block in the editor. Next, let’s add a feature to introduce an offset into 

the signal. To achieve this, we need to modify the `__init__` function to accept an 

additional parameter called `offset`, which should default to 0. We’ll store this parameter 

with `self.offset = offset`. Finally, we will incorporate the offset into the signal by adding 

it to the output. 

What does this change accomplish? It not only amplifies your signal by the amplification 

factor but also adds the specified offset. This means you can boost the signal by a certain 

amount, effectively raising its baseline level. 

After making these adjustments, save the changes and exit the editor. We will now add a 

variable for the offset. Click to create a new variable, name it `offset`, and set its default 

value to 0.  

If you execute the flow graph, you'll see that with the offset set to 1, the signal is shifted 

accordingly. Adjust the offset to 0, and the signal will match the original baseline. As you 

increase the offset, you’ll see the signal move up or down. You can also make the offset 



negative if needed. By reducing the amplification and introducing an offset, you can now 

handle multiple parameters effectively. 
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Let me show you how to modify this amplifier to handle two signals, just out of curiosity. 

Suppose you want to use your amplifier for both two input signals and two output signals. 

It’s important to note that the inputs and outputs don’t have to be identical, but for 

simplicity, let’s assume they are. You’ll use `float32` for both the input and output. 

In this scenario, if you configure the amplifier with two input signals and two output 

signals, you can amplify both signals simultaneously. By adding a line to handle two 

signals and setting it to 1, you will enable the amplifier to process both signals in parallel. 

Save your changes and apply them. You’ll now see that your setup supports two signals. 

Let’s take it a step further by expanding to four inputs. To do this, create a copy of the 

signal source by pressing `Ctrl-C` and `Ctrl-V`, and modify it to produce a square wave 

instead of a sine wave. Connect the original square wave to one input and the square wave 

with amplification and offset to another. 
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When you run the flow graph, both signals will experience the same offset and 

amplification. For example, increasing the offset will shift both the sine and square waves 

together, and increasing the amplification will boost both signals simultaneously. 

This demonstrates how you can create and use Python blocks with minimal effort. The key 

takeaway is that you can write custom Python functionality to process your arrays by 

simply opening the editor and coding as needed. While it’s not mandatory to know, using 

Python blocks in GNU Radio can significantly simplify your implementation compared to 

managing code on your own. 

There’s an important caveat I’d like to mention. If you write inefficient or slow code within 

your Python blocks, it can adversely affect the overall performance of the entire block. So, 

it’s crucial to ensure that your code is both concise and efficient. 

To illustrate this further, let’s consider an example with a decimation block to add some 

variety. We’ll create a decimation block that performs block-based addition: for instance, 

it will take three numbers, sum them, and output the result; or take four numbers, sum 



them, and output the result. Essentially, it will replace every set of four numbers with a 

single summed number, achieving the decimation. 
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Here’s how we can set this up: 

1. Press `Ctrl-F` (or `Command-F`) to search for "block" and select the Python block 

from the core miscellaneous section. 

2. Double-click the Python block, select "Open in Editor," and open it in your preferred 

Python editor. 

Since we’re creating a decimation block, we need to make a few modifications: 

• Instead of inheriting from `gr.sync_block`, we will derive from 

`gr.decim_block`. 

• We’ll add one parameter: `decimRate`, which will be an integer representing 

the decimation rate. 

• We will name this block `adder`, as it will perform addition based on blocks. 



Keep the input and output types as `float32`, but add a new parameter `decimRate` that 

we need to pass to the superclass, `gr.decim_block`.  

In the constructor, ̀ self.exampleParams` should be replaced with `self.decimRate`. Also, 

specify to GNU Radio that the relative rate of this block is ( 1
decimRate

). This tells GNU Radio 

that for every sample input, only one sample will be output. For example, if the decimation 

rate is 2, you’ll receive one output sample for every two input samples. 

This relative rate information is used by GNU Radio to determine the output length in the 

`work` function. Consequently, the `input_items` and `output_items` will automatically 

be sized according to the decimation rate. 

In the `work` function, create an empty array and populate it with the results. For instance, 

initialize the result array with zeros, where the length of the array should be the number of 

input items divided by the decimation rate. Here’s how you might do it: 

result = np.zeros(len(input_items[0]) // self.decimRate) 

Next, use a loop to accumulate the array elements. For example, if the decimation rate is 

4, you’ll sum elements from the zeroth index, the fourth index, the eighth index, and so on. 

This loop will add blocks of data and place the summed results into the result array. 

This approach allows you to handle block-based operations efficiently while demonstrating 

how you can extend GNU Radio’s capabilities with custom Python code. 

Next, I will access the first element, the fifth element, the ninth element, and so on. To 

achieve this, I will use the slice notation in the code. Specifically, I’ll set it to start at the 

`i`-th element, continue taking elements at intervals of the decimation rate, and then assign 

this to the output array.  

So, what does this particular slice notation mean? It means to start at the `i`-th element, 

retrieve all the elements, and step through them at the interval specified by the decimation 

rate. For example, in the first iteration of this loop, you will gather the zeroth element, the 

fourth element, the eighth element, and so on, assuming the decimation rate is 4. In the 



subsequent iteration, you will retrieve the first element, the fifth element, the ninth element, 

and so forth. 

In the result array, the first element will contain the sum of the 0th, 1st, 2nd, and 3rd 

elements from the input array. The second element will sum the 4th, 5th, 6th, and 7th 

elements, and so on. This process ensures that every group of four successive entries in the 

input items is summed up.  

Let’s verify this setup. I’ll save the changes and exit the editor. If you encounter an 

"unexpected keyword" error, check the code for mistakes. For instance, the keyword should 

be `decim` instead of `decimation`, as per GNU Radio documentation. 
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Now, let’s add a throttle block. We’ll set the throttle to operate with float inputs and 

outputs, then click "OK". Next, add a vector source block for easier control and to observe 

how the block behaves. Also, add a time sink block. Ensure that both the vector source and 

the time sink are set to float. 



For the vector source, we’ll provide elements as a Python list. For example, you might use 

`[1, 1, 2, 3]`. GNU Radio will handle this list and repeat it as needed. The resulting output 

will be the summation of these values, allowing us to see the effects clearly. 
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Let’s run this setup and observe the results. 

We will connect the blocks as follows: one connection here, another one here, and so on. 

Before we proceed, remember that with the input values 1, 1, 2, and 3, the total sum should 

be 7. Keep that in mind. 

Oops, it seems there was a minor syntax error, sorry about that.  

Actually, there was no syntax error; we just needed to specify the decimation rate. We’ll 

set it to 4 for this example. Now, let’s execute the flow graph. We get a result of 7. Why is 

it 7? Because the block is summing every 4 elements.  

To verify, let’s modify the input to 8 elements with the values 1, 1, -1, -1. If you add these 

4 elements, you get 0. So, the output will be 7, followed by 0, then 7 again, and 0 again. 



This pattern occurs because we are decimating by 4, meaning each cycle of 8 samples is 

reduced to a single output sample. 

To further illustrate, let's compute the frequency corresponding to this setup. With 32kHz 

divided by 8, we get 4kHz, which translates to about 0.25 milliseconds. However, due to 

decimation by 4, the effective interval becomes 0.25 milliseconds divided by 4, resulting 

in 0.0625 milliseconds.  

Let’s check the graph again. For a more detailed view, we can add more data points. For 

instance, using the sequence 1, 1, 2, 3, 1, 1, -1, -1, we get similar results where the sum of 

the first 4 values is 7 and the sum of the next 4 values is 0.  

Zooming in, the distance between two peaks is 0.0625 milliseconds, confirming our 

calculations. So, in summary, with 8 samples and a decimation rate of 4, the resulting 

interval between peaks aligns with our expected value of 0.0625 milliseconds. 

We see that one peak is around 16.25 and the next is at 16.31, which corresponds to an 

interval of 0.0625 milliseconds. This illustrates the efficiency of decimation.  

Let's experiment with different inputs and parameters. Suppose we use the sequence 1, 1, 

followed by -1, -1, and set the decimation rate to 2. With this setup, you'll notice that the 

output values are 2, 0, 2, 0. If you adjust the decimation rate to 1, the block no longer 

performs addition, and you end up with a pattern resembling a square wave, where you see 

2 samples of 1, 2 samples of -1, and so on.  

This highlights how critical understanding decimation is to utilizing GNU Radio 

effectively. You can create blocks with various decimation rates and tailor them to your 

needs. The GNU Radio documentation provides valuable information on leveraging this 

feature to enhance your signal processing tasks. 

What we’ve just covered is a fundamental introduction to extending GNU Radio's 

functionalities using Python. Specifically, you’ve learned how to create embedded Python 

blocks, where you can insert Python code snippets to perform efficient signal processing. 

This capability allows for significant customization and efficiency in handling your signal 



processing requirements. 

While creating custom blocks can be quite appealing, it's essential to strike a balance. 

Writing overly complex processing tasks in blocks can potentially slow down your flow 

graph. If you implement numerous Python computations inefficiently, you might adversely 

impact the performance of your simulation.  

However, in many cases, using a few lines of Python code to express certain functionalities 

or processes can be more straightforward and efficient than assembling numerous blocks 

and wiring them together. Embedded Python blocks are an excellent way to extend GNU 

Radio's capabilities in such scenarios. 

I encourage you to explore the GNU Radio documentation on creating your own blocks in 

both Python and C++. This knowledge will enable you to implement custom blocks 

efficiently when the need arises. Thank you. 


