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Hello, and welcome back to this lecture series on Digital Communication using GNU 

Radio. I’m Kumar Appiah from the Department of Electrical Engineering at IIT Bombay. 

Today, we will be concluding our series on demodulation, at least from a theoretical 

standpoint. In this session, we will delve deeper into M-ary signal demodulation and 

subsequently explore the practical application of these methods using GNU Radio. 
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In our previous lecture, we had an extensive discussion on on-off signaling, specifically 

binary signaling where the transmitted signals are either 0 or S(t). Through this signaling 



method, we were able to analyze the optimal detection scheme and calculate the symbol 

error rate.  

Now, I’d like to make a small but important clarification regarding our earlier discussion. 

We determined our decision rule based on the quantity S, and using S, we plotted our 

probability density functions (PDFs) and identified the decision regions with respect to |S|2, 

whether it should be to the left or right of |S|2, and so on. However, there is a slight 

modification I want to introduce. 
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Earlier, we mentioned that ψ(t), a normalized version of S(t), can also be utilized as a 

decision mechanism. To provide some context, let’s redefine our variable Z as 𝑌𝑌 ⋅ 𝑆𝑆. Now, 

if we define U as the inner product 𝑌𝑌 ⋅ 𝜓𝜓, we obtain a new metric U, which is essentially 

Z normalized by |S|. Although this modification doesn’t alter the overall result, repeating 

the analysis with U reveals subtle differences. 

For instance, when examining the relationship involving U, the expected value of Z given 

H0 was 𝐸𝐸[𝑍𝑍|𝐻𝐻0] = 𝐸𝐸[𝑛𝑛 ⋅ 𝑆𝑆] = 0 , and the variance of Z given H0 was Var[𝑍𝑍|𝐻𝐻0] =



Cov(𝑛𝑛 ⋅ 𝑆𝑆,𝑛𝑛 ⋅ 𝑆𝑆). With the introduction of U, these relationships undergo an interesting 

change. 

Specifically, the variance of U under H0 becomes Var[𝑈𝑈|𝐻𝐻0] = Cov(⟨𝑛𝑛,𝜓𝜓⟩, ⟨𝑛𝑛,𝜓𝜓⟩). Using 

the covariance formula Cov(𝑛𝑛 ⋅ 𝑣𝑣1,𝑛𝑛 ⋅ 𝑣𝑣2) = σ2⟨𝑣𝑣1, 𝑣𝑣2⟩, this simplifies to σ2⟨𝜓𝜓,𝜓𝜓⟩ = σ2. 

Similarly, the variance of U under H1 also equals σ2. 
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In this context, if we were to plot the PDFs under hypotheses H1 and H2 for U, both would 

have the same height, indicating an identical variance. However, there is a crucial detail in 

calculating the mean value of U under H1. The expected value 𝐸𝐸[𝑈𝑈|𝐻𝐻1]  would be 

𝐸𝐸[⟨𝑌𝑌,𝜓𝜓⟩], where Y = S + n. Since ⟨𝑆𝑆,𝜓𝜓⟩ is equivalent to |S|, you will find that U under H1 

has a mean of |S| and a variance of σ2. In essence, what we’ve done is scale the entire 

problem by |S|, which leads to these slight yet insightful changes in our analysis. 

Now, let's discuss a subtle yet important advantage in this context. When calculating the 

probability of symbol error, you will arrive at the same result as before when using S, which 

is logical. However, an interesting observation here is that the distance, given by |S| divided 



by 2σ (where σ is the standard deviation of the noise), becomes the critical term in your Q-

function. Recall that the probability of error, PE, for equiprobable signaling was |S| over 

2σ. This is determined by finding the distance between the means of the signals being 

transmitted, specifically, between 0 and S(t), which corresponds to a distance of |S| over 

2σ along this axis. 
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If we revisit our previous discussion on Z, you'll recall that the means were 0 and |S|2, with 

the noise variance being 𝜎𝜎2|𝑆𝑆|2. If you compute the distance between these two means and 

divide it by the square root of the variance, you will again find the result |S|2 over 2σ |S|, 

which is consistent with our earlier findings. This implies that whether you take the inner 

product 𝑍𝑍 ⋅ 𝑆𝑆 or 𝑍𝑍 ⋅ 𝜓𝜓 (or any scaled version of S), the result will be the same. 

The only minor benefit of using the inner product 𝑌𝑌 ⋅ 𝜓𝜓 is that it gives you a number 

already scaled by |S|, though the outcome remains unchanged. This is just a useful insight: 

the choice of taking the inner product 𝑌𝑌 ⋅ 𝑆𝑆 is not unique; any scaled version of S will yield 

the correct result. 



Now, let’s shift our focus to a more general form of binary signaling, where we consider 

two signals, S0 and S1. Here, it’s important to be cautious: simply writing S0 and S1 doesn’t 

automatically imply that there are two dimensions involved. For instance, suppose S0 is 

something like ψ1 and S1 is -ψ1 or 4ψ1; in such cases, the dimensionality could be anywhere 

from one to two, depending on your choice of S0 and S1. 
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Let's analyze this general scenario. Similar to how we previously took the inner product 

with S in the on-off case, here we’ll consider the inner product with S0 and S1.  

For general binary signaling, let's express the problem as follows: if Y(t) = S0(t) + n(t) or 

Y(t) = S1(t) + n(t), it means that when you transmit 0, S0(t) is sent; when you transmit 1, 

S1(t) is sent. No surprises here, if you set S0 to the zero signal, you end up with the same 

scenario as in the previous on-off signaling situation. 

Now, let's determine the optimal decision region using the same tools as before. The 

process is nearly identical. Take the inner product 𝑌𝑌 ⋅ 𝑆𝑆0 − |𝑆𝑆0|2/2. Why? Because this 

was our decision criterion. Previously, we minimized |Y - Si|2 and, after expanding, 



removed |Y|2 and multiplied by a negative sign to maximize the resulting quantity. 

Similarly, here you must determine which value is larger; hence, find the argmax. If 

⟨𝑌𝑌, 𝑆𝑆0⟩ − |𝑆𝑆0|2/2  is larger, conclude that 0 was sent. If ⟨𝑌𝑌, 𝑆𝑆1⟩ − |𝑆𝑆1|2/2  is larger, 

conclude that 1 was sent. It's straightforward. 

Alternatively, you can minimize or find the argmin of the distance, which essentially results 

in the same outcome. In this context, you can refer to these specific variables as Z. For 

example, let 𝑍𝑍 = ⟨𝑌𝑌, 𝑆𝑆0⟩ under hypothesis H0. To find the expectation of Z under H0, it’s 

simple, this expectation will be ˂ S0, S0 ˃ plus the expected value of the noise term ˂n,S0˃. 

Without diving into the complete details, this simplifies to |S0|2. 
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Let's delve into the variance of Z given the hypothesis H0. As you might expect, the 

variance is closely related to the covariance. Here, you must be precise. Under hypothesis 

H0, Y can be expressed as S0 + n, where n is the noise component. Therefore, the variance 

is computed from the expression Cov(𝑆𝑆0 + 𝑛𝑛, 𝑆𝑆0 + 𝑛𝑛). 



If you expand this expression, the term involving |S0|2 will emerge, simplifying the 

calculations. A similar procedure applies if you were to evaluate the variance under a 

different hypothesis, say H1. Often, |S0|2 is chosen to be equal to |S1|2, which simplifies the 

decision region, as both signals have the same energy. 

Although we're not going into a full evaluation here, let's summarize the decision-making 

process: the decision region is determined by comparing the inner products ⟨𝑌𝑌, 𝑆𝑆0⟩ −

|𝑆𝑆0|2/2 and ⟨𝑌𝑌, 𝑆𝑆1⟩ − |𝑆𝑆1|2/2. If you simplify this by moving terms involving S0 and S1 to 

opposite sides, you get ⟨𝑌𝑌, 𝑆𝑆1 − 𝑆𝑆0⟩. The decision rule then becomes whether this quantity 

is greater or less than |𝑆𝑆1|2/2 − |𝑆𝑆0|2/2. This forms your decision region. 

There’s also an intuitive understanding here: when you evaluate the probability of symbol 

error in this setup, you derive 𝑄𝑄 �|𝑆𝑆1−𝑆𝑆0|
2𝜎𝜎

�, where d = |S1 - S0| is the distance between the 

pair of signals. This result aligns with our intuition because, in the on-off signaling 

example, where S0 was essentially zero, you obtained 𝑄𝑄 �|𝑆𝑆|
2𝜎𝜎
�, where S1 or S was the non-

zero signal. Therefore, 𝑄𝑄 � 𝑑𝑑
2𝜎𝜎
� serves as a crucial check. Whenever you're dealing with 

binary signaling under Gaussian noise, the optimal detector will yield a probability of 

symbol error given by 𝑄𝑄 � 𝑑𝑑
2𝜎𝜎
�, where σ is the noise variance, and d is the distance between 

the two signals. 

It's essential to note that this result holds true only under the assumption of equiprobable 

signaling, where Maximum Likelihood (ML) detection coincides with Minimum 

Probability of Error (MPE) detection. If the signals are not equiprobable, the decision 

region shifts, and this needs to be considered carefully. 

Therefore, the key idea is to identify the point where the greater-than or less-than condition 

holds, as this defines your decision region. Typically, this decision point lies at the 

midpoint between S0 and S1 if these signals are well chosen. In general binary signaling, 

the expression 𝑄𝑄 � 𝑑𝑑
2𝜎𝜎
� also applies to mRNA signaling scenarios. 
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Now, let's consider binary signaling with S0 and S1, which can be associated with the bits 

0 and 1. We haven't yet discussed the energy consumption aspect. Energy in a signal, as 

you know from basic circuit theory, is the integral of the square of the signal over the 

interval from 0 to T. For our purposes, |S0|2 is the energy of S0, computed as ∫ 𝑆𝑆02(𝑡𝑡)𝑑𝑑𝑡𝑡𝑇𝑇
0 , 

and similarly for S1. 

When these two signals are transmitted with equal probability, since 0s and 1s occur half 

the time, the energy per bit, Eb, can be defined as 1
2

(|𝑆𝑆0|2 + |𝑆𝑆1|2). Here, |S0|2 and |S1|2 

correspond to ∫ 𝑆𝑆02(𝑡𝑡)𝑑𝑑𝑡𝑡𝑇𝑇
0  and ∫ 𝑆𝑆12(𝑡𝑡)𝑑𝑑𝑡𝑡𝑇𝑇

0 , respectively. 

An interesting conclusion arises when considering the symbol error rate or bit error rate in 

binary signaling. Both rates are the same when 𝜎𝜎2 = 𝑁𝑁0
2

, where N0 is the noise power 

spectral density. We specifically choose 𝑁𝑁0
2

 as the noise variance per dimension, reflecting 

the standard assumption in communication theory. 



The probability of error under maximum likelihood detection is given by 𝑄𝑄 � 𝑑𝑑
2𝜎𝜎
�, where d 

represents the norm |S1 - S0|, and σ is the noise standard deviation. This can be further 

expressed as 𝑄𝑄 ��𝑑𝑑2

𝐸𝐸𝑏𝑏
⋅ � 𝐸𝐸𝑏𝑏

2𝑁𝑁0
�. This expression is quite intriguing because the ratio 𝐸𝐸𝑏𝑏

𝑁𝑁0
 acts 

as a signal-to-noise ratio (SNR) on a per-bit basis. In this context, 𝑑𝑑
2

𝐸𝐸𝑏𝑏
 can be interpreted as 

a measure of power efficiency. 

To unpack this further, consider binary signaling where the bit 0 corresponds to signal S0, 

and bit 1 corresponds to signal S1. The average energy expenditure is |𝑆𝑆1|2

2
. Now, if you 

wish to increase the distance d between S0 and S1, you must increase the amplitude of S1, 

effectively pushing it further away from S0. This increase in amplitude, however, comes at 

a cost: as the amplitude grows, so does the energy consumption, whether measured in 

joules or in power (joules per second). Therefore, increasing d improves performance by 

reducing the bit error rate, but it requires more energy. 

This trade-off is critical in designing communication systems. If you arrange your signal 

constellation points (e.g., S0, S1, S2) such that they are spaced far apart, your system will 

exhibit excellent performance with a very low bit error rate. However, this comes with the 

caveat of increased energy consumption. 

Another important factor is the SNR per bit, which effectively dictates the performance of 

your system, not the signal power or noise power individually. In other words, a system 

with very low noise can achieve a desirable bit error rate with minimal signal power. 

To illustrate, consider a communication system where you require a bit error rate of 10−9. 

If the noise variance is 1, you might need 100 joules of signal power. However, if the noise 

variance drops to 0.1, the required signal power may reduce to just 10 joules. Further 

reducing the noise variance to 0.01 might require only 1 joule. This demonstrates that it is 

the ratio of signal power to noise power, SNR, that fundamentally determines system 

performance, not the absolute values of these quantities. 



For a practical example, consider a communication system operating in a narrow frequency 

band where the noise is very low. In such a scenario, the required signal power to achieve 

a certain bit error rate is also low. However, in a high-noise environment, perhaps due to 

high radiation levels, the required signal power must be significantly increased to maintain 

the same bit error rate. For instance, transmitting a signal across a room requires some 

power, but transmitting to a satellite, potentially hundreds of kilometers away, demands 

much more power to counteract the noise. 
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Therefore, the signal-to-noise ratio is the critical metric in determining system 

performance. The term 𝑑𝑑
2

𝐸𝐸𝑏𝑏
 represents power efficiency: the larger d is, the more power you 

consume. While a lower d improves power efficiency, you must still meet your bit error 

rate requirements. 

Understanding binary signaling is foundational since M-ary signaling is essentially an 

extension of these principles. For instance, consider on-off keying where S0 = 0 and S1 = 

1. Here, the error probability is given by 𝑄𝑄 �|𝑆𝑆1|
2𝜎𝜎
�. However, signals can also be placed in 



different configurations. For example, S0 and S1 can be made orthogonal. Can you think of 

examples of binary orthogonal signaling? There are several, and exploring them further 

can provide deeper insights into efficient communication system design. 

Let's consider a scenario where you have two signals, S0 and S1. Imagine that S0 

corresponds to the vector [1, 0] and S1 to the vector [0, 1]. Clearly, these two vectors are 

orthogonal. If we visualize this, assume that the coordinates are labeled as 1, 0, -1, 0.5, and 

so on. In this context, it becomes apparent that these signals are orthogonal by nature. 

Now, if you carefully select the basis vectors, such as [1, 1] and [1, -1], the orthogonality 

becomes even more evident. However, in this case, we're using the vectors [1, 0] and [0, 

1], which still represent orthogonal signals. When you use orthogonal signals, you end up 

with a specific type of signal constellation. This constellation will influence the error 

performance, depending on how far S0 and S1 are from the origin, among other factors. 

Although the basic process of calculating inner products (like ⟨𝑦𝑦, 𝑆𝑆0⟩ and ˂  y, S1 ˃ ) remains 

the same, the actual implementation may vary slightly depending on the scenario. 
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One particularly interesting case is antipodal signaling. This type of signaling can be seen 

as an extension of on-off keying. Here, the signals S0 and S1 are typically equidistant from 

the origin but in opposite directions. The dimension of the signaling in this case is exactly 

one, similar to on-off keying. You can choose various signal forms, such as a triangular 

pulse or a sinc function, where one signal is the negative of the other. 

In binary signaling, a fascinating simplification occurs. If you write out the detector as ˂ 

y, S0 ˃  and ˂  y, S1 ˃  and work through the math, you’ll find that, assuming equally probable 

signaling, the decision boundary is simply whether the result is positive or negative relative 

to zero. You just take the sign of z = ˂ y, S1 ˃. If the result is positive, the signal is S1; if 

negative, it’s S0. This leads to a very elegant detection method where the error probability 

is given by 𝑄𝑄 � 𝑑𝑑
2𝜎𝜎
�. You can also verify the average energy usage for these cases, which is 

an important consideration in practical systems. 
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Moving on to M-ary signaling, the maximum likelihood (ML) detection rule doesn't change 

significantly from the binary case. The decision rule becomes δ𝑀𝑀𝑀𝑀(𝑦𝑦) = arg min
𝑖𝑖
�⟨𝑦𝑦, 𝑆𝑆𝑖𝑖⟩ −



|𝑆𝑆𝑖𝑖|2

2
�, where i runs from 1 to M-1. The key difference is that there are now more signal 

points Si. Alternatively, you could express this as finding the signal point with the 

minimum Euclidean distance from the received signal y, i.e., arg min
𝑖𝑖

|𝑦𝑦 − 𝑆𝑆𝑖𝑖|. This is 

essentially finding the signal point closest to the received signal in terms of squared 

Euclidean distance. 

The concept can be extended to practical modulation schemes like 4-PAM (Pulse 

Amplitude Modulation). In this case, the signaling is one-dimensional, with possible signal 

values S0, S1, S2, S3 corresponding to scaled versions of the same basic signal, such as -3, 

-1, 1, and 3. The optimal decision regions are then defined by boundaries such as to the left 

of -2 being associated with -3, and to the right of -2 being associated with -1, and so on. 

To determine the symbol error rate, you place a Gaussian distribution over the signal points 

and calculate the probability that the noise causes the received signal to fall into an 

incorrect region. 
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However, the calculation of the symbol error rate for certain points, like 1, requires you to 

consider errors from multiple regions, leading to a combination of Q functions. For 

equiprobable signaling, this calculation can be simplified because the error rates for 

symmetric signal points (e.g., 1 and -1) are identical. Similarly, the error rates for the 

outermost points, such as -3 and 3, will also be the same. 

When working with signals like those at 3 and -3, you can directly use the cue. However, 

for signals at 1 and -1, you'll need to use two cues because the signal could deviate to either 

side. It's important to exercise caution here, and this is an exercise you should try on your 

own to solidify your understanding. 

Moving on to QPSK (Quadrature Phase Shift Keying), the decision regions become quite 

fascinating. These regions are divided into four parts. Why is that? Imagine you're standing 

at a particular point where the signal is received. If you're here, this point is obviously the 

closest. But if you shift slightly, another point becomes the nearest. So, each decision 

region corresponds to the area where a specific signal point is closest. 
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Now, depending on how you view this, QPSK can be interpreted in two ways. If you 

consider it in terms of real numbers, it appears two-dimensional. But if you think in terms 

of complex numbers, it’s one-dimensional. However, analyzing it as a combination of real 

signals simplifies the problem. You must decide whether you're above or below the x-axis, 

as well as whether you're to the left or right of the y-axis.  

This leads to an intriguing concept regarding bit assignment. For instance, consider a bit 

assignment like 00, 01, 11, and 10. Notice how the bit 0 is consistently located in the upper 

half of the plane, while bit 1 is in the lower half. So, determining whether you’re above or 

below the x-axis reveals the most significant bit. Similarly, the least significant bit remains 

the same to the left and right of the y-axis. Thus, identifying whether you’re to the left or 

right of the y-axis informs you about the least significant bit.  

In fact, one of the key insights here is that QPSK can be viewed as two BPSK (Binary 

Phase Shift Keying) schemes combined when you analyze it from a bit perspective. This 

is something you'll explore and confirm in future classes. 

To summarize what we've covered in recent lectures, we delved deeply into how 

demodulation works and how it enables the detection of transmitted signals. We first 

established that it’s sufficient to project the received signals onto the modulation signal 

space. In general, the detection problem then reduces to identifying the region in which the 

received vector lies. This outcome naturally follows from the optimal decision being based 

on minimizing the distance to the correct signal point. 

For example, in QPSK, you observed that each region corresponds to the point with the 

minimum distance. Identifying where your received signal lies within these regions 

automatically partitions your decision space. 

When using maximum likelihood detection under additive white Gaussian noise, this 

minimum distance decoding is optimal. The same holds true for minimum probability of 

error (MPE) under equiprobable signaling. When symbols are equally probable, MPE and 

ML are equivalent. 



In the next phase, we’ll take a brief detour into a radio-related exercise before returning to 

what happens at the bit level. While symbol errors are important, bit errors are the focus 

for most digital communication systems. How do bit errors occur, and how can we 

characterize them as opposed to symbol errors? We’ll explore these questions in upcoming 

lectures. Thank you. 


