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Hello, and welcome back to our lecture series on Digital Communication using GNU 

Radio. I am Kumar Appiah from the Department of Electrical Engineering at IIT Bombay. 

In this session, we will continue our discussion from the previous lecture, where we 

explored the topic of optimal reception in an additive white Gaussian noise (AWGN) 

channel. 
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To recap briefly, we have been examining binary signaling, and before we dive deeper into 

that, it is essential to revisit some of the foundational tools we developed earlier. 



Specifically, let us consider M-ary signaling within an AWGN channel. Here, the received 

vector y is modeled as y = si + n, where si represents the transmitted signal, and n is the 

noise. 

Now, how do we arrive at these vectors? We derive them by projecting the signals onto the 

basis functions, effectively allowing us to treat the signals as vectors in a multidimensional 

space. Importantly, the noise that affects our signaling is also projected onto these basis 

signals. The resulting noise vector is what directly influences detection. Thanks to the 

theorem of irrelevance, the component of noise orthogonal to the signal space, denoted as 

𝑛𝑛⊥, does not interfere with our detection process. Thus, the relationship simplifies to y = si 

+ n, where n is a zero-mean Gaussian noise vector with a covariance matrix σ2 I. This 

means that each component of the noise has variance σ2, and these components are 

independent and uncorrelated. 

From this setup, we derived the maximum likelihood (ML) detection rule. The essence of 

ML detection lies in maximizing the likelihood function, which in this case is Gaussian. 

The key observation was that the relationship between y and si appears only in the 

exponent, specifically in the term 𝑒𝑒−|𝑦𝑦−𝑠𝑠𝑖𝑖|2. Therefore, maximizing the likelihood function 

is equivalent to minimizing the squared Euclidean distance between y and si. Consequently, 

the ML detection rule reduces to a minimum distance detection rule. 

Additionally, we explored a simplification where the detection criterion can be expressed 

in terms of inner products. By expanding |𝑦𝑦 − 𝑠𝑠𝑖𝑖|2, we can eliminate the common term |y|2 

and focus on maximizing the inner product ⟨𝑦𝑦, 𝑠𝑠𝑖𝑖⟩ minus |si|2. This alternative form is often 

convenient and interchangeable with the minimum distance rule, depending on the specific 

problem. 

Now, when considering the minimum probability of error detection, an extra term related 

to the prior probability πi of the transmitted symbols comes into play in the likelihood 

function. This is because the prior probabilities affect the detection rule, contributing an 

additional logarithmic term. If the prior probabilities log𝜋𝜋𝑖𝑖 are the same for all symbols i, 

the decision rule simplifies back to the ML detection. Therefore, under the assumption of 



equally likely transmitted symbols, the ML and minimum probability of error detection 

rules are equivalent. 
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To illustrate the significance of considering prior probabilities, imagine a scenario where 

the probability of transmitting a '1' is much higher than that of transmitting a '0'. For 

instance, if the probability of sending a '1' is 0.9 and the probability of sending a '0' is only 

0.1, the detection strategy must account for this imbalance. 

Let me give you a simple exercise to think about. Suppose the probability of transmitting 

a '1' is 0.9. This implies that if you were to blindly assume that a '1' is always sent, 

regardless of any information from the receiver, you'd still be correct 90% of the time! In 

this case, it becomes clear that performing maximum likelihood (ML) detection is not 

necessarily optimal. If you work through the math, you’ll find that the minimum probability 

of error (MPE) would actually result in a success rate slightly higher than 90%.  

This is something worth contemplating. The proof of this was covered in our previous 

class, so we won't rehash that now. Instead, let's shift our focus to binary signaling. Binary 



signaling forms the foundation for more complex communication systems, essentially, it is 

the process of transmitting bits. Although it might seem simple, binary signaling serves as 

a critical building block for signaling schemes that involve a higher number of signals. 

To better understand binary signaling and evaluate its performance, let's consider a 

straightforward case: on-off signaling. In this method, either you transmit a signal by 

switching on a voltage, or you transmit nothing at all. These two modes are analogous to 

transmitting a '0' or a '1'. The idea here is that, although we're focusing on a single symbol 

in this instance, the transmission pattern repeats itself at every symbol interval T, as we 

discussed in the context of pulse shaping. 
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In this scenario, let’s define two hypotheses. Under hypothesis H1, we have the relationship 

Y(T) = S(T) + N(T), where S(T) is the signal sent, and Y(T) is the received signal, which 

is the sum of the transmitted signal S(T) and the noise N(T). This corresponds to the case 

when a '1' is transmitted. On the other hand, under hypothesis H0, which represents sending 

a '0', no signal is transmitted, and thus the received signal is purely noise: Y(T) = N(T). 



The challenge now is to use the knowledge we've gained so far to determine the optimal 

detection strategy. We will assume that '0' and '1' are transmitted with equal probability, 

meaning that minimizing the probability of error is equivalent to performing maximum 

likelihood detection. In our last lecture, we made an educated guess that the decision rule 

could be based on the inner product ⟨𝑌𝑌, 𝑆𝑆⟩. The idea is that if this inner product, denoted as 

Z, exceeds a certain threshold, we decide that a '1' was transmitted; otherwise, we decide 

that a '0' was transmitted. The threshold in this case is |S|2 / 2. 

This guess is grounded in reason: if there were no noise, the inner product ⟨𝑌𝑌, 𝑆𝑆⟩ would 

simply be |S|2 when a '1' is transmitted, and it would be zero when a '0' is transmitted. So, 

intuitively, the decision threshold lies at the midpoint between these two values. Once we 

establish this decision rule, we can then compute the associated ML error probabilities to 

assess its performance. 

Before delving deeper into error probability calculations, it’s always a good idea to 

conceptualize the problem in terms of vectors. Visualizing the signaling in terms of vector 

space helps solidify your understanding of how signals behave under different conditions. 

In this particular case, we only have one signal of interest, S(T), making it an ideal example 

to solidify these concepts further. 

Let's dive into the discussion. Suppose we have a signal S(T), and let’s say it has a value 

of 1 between 0 and 1 for simplicity. Now, you could choose a different signal, like a sinc 

function, but for now, we'll keep it simple and stick with this. The way we've chosen S(T) 

allows for an easy application of Gram-Schmidt orthonormalization because there's only 

one signal involved. In this case, S(T) is equivalent to our basis function ψ(T).  

If you wanted to experiment a bit, you could scale S(T) by some factor, say 10. In that case, 

ψ(T), which is our normalized basis function, would be S(T)/10, and you can scale 

accordingly. Essentially, imagine that in the background, there is a basis function, ψ(T), 

which is equal to S(T) divided by its norm. To clarify, the norm of S(T) is the square root 

of the integral of 𝑆𝑆2(𝑇𝑇) 𝑑𝑑𝑑𝑑. Thus, ψ(T) is simply S(T) scaled to have unit energy. This gives 

us a clear picture: we are dealing with one-dimensional signaling since we only have one 

signal S(T). If we had additional signals, say S1(T) and S2(T), spanning different 



dimensions, we would then be in a multi-dimensional signaling scenario, but here, it's just 

one-dimensional. 
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Now, let’s work through this in a clear and systematic manner, starting with the decision 

rule and verifying whether it holds true. Let’s visualize this by sketching the probability 

density functions (pdfs) of the received signal Y under two hypotheses: H0 and H1. 

Hypothesis Testing 

Under hypothesis H0, nothing is sent, so the receiver only picks up noise. Under hypothesis 

H1, S(T) is transmitted, and the received signal is the transmitted signal plus noise, S(T) + 

N(T). In both cases, we project the received signal onto the basis function ψ(T) by 

calculating the inner product ˂ Y, S ˃, which gives us a scalar Z. 

Let’s now visualize the pdfs of Z for each hypothesis. Under H0, where no signal is sent, Z 

corresponds purely to noise, so the pdf of Z, denoted 𝑓𝑓𝑍𝑍(𝑍𝑍 ∣∣ 𝐻𝐻0 ), will be centered around 

zero with a certain variance. Under H1, where the signal plus noise is received, the pdf of 



Z, denoted 𝑓𝑓𝑍𝑍(𝑍𝑍 ∣∣ 𝐻𝐻1 ), will be centered around the mean of the inner product ⟨𝑆𝑆 + 𝑁𝑁, 𝑆𝑆⟩, 

which corresponds to ⟨𝑆𝑆, 𝑆𝑆⟩ = |𝑆𝑆|2, again with some variance due to the noise. 

Mean and Variance of the Gaussians 

Now, let's explore the means and variances of these two Gaussian distributions. The key 

question is why these distributions are Gaussian in the first place. The reasoning is 

straightforward: S(T) is a known deterministic signal, and N(T), the noise, is Gaussian. 

When we calculate the inner product Z = ˂ Y, S ˃, the result is a linear combination of the 

Gaussian noise, and any linear combination of Gaussian variables is also Gaussian.  

Under H0, the signal isn’t transmitted, so Z reduces to the inner product of noise with the 

basis function, Z = ˂ N, S ˃. Since the noise is zero-mean, the expected value of Z is zero. 

However, under H1, the transmitted signal contributes to Z, so we have 𝑍𝑍 = ⟨𝑆𝑆 + 𝑁𝑁, 𝑆𝑆⟩, 

which simplifies to |𝑆𝑆|2 + ⟨𝑁𝑁, 𝑆𝑆⟩. Thus, the expected value of Z is |S|2 under H1. 
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Thus, in both cases, Z is conditionally Gaussian: under H0, it has a mean of zero, and under 

H1, it has a mean of |S|2. The variances in both cases depend on the power of the noise 

projected onto the signal space. With this understanding, we can move forward to calculate 

the ML error probabilities based on the value of Z. 

Before we proceed with those calculations, it’s essential to ensure that this setup is clear. 

We’ve established that Z follows a Gaussian distribution under both hypotheses, with 

different means and variances. From here, we can work through the decision rule, verifying 

that it minimizes the probability of error, and ultimately derive the corresponding error 

probabilities. 

We are adding a fixed number, and when we take the inner product ⟨Y, S⟩, Y contains N(t), 

which is the Gaussian noise, while all other terms are fixed numbers. Hence, the 

expectation of Z given H0 is the expectation of N over S, i.e., 𝐸𝐸[⟨𝑁𝑁, 𝑆𝑆⟩], which is zero. The 

variance of Z given H0 is the covariance of ⟨𝑁𝑁, 𝑆𝑆⟩, which we've previously established as 

σ2|𝑆𝑆|2. This implies that the expectation of Z given H1 is the expectation of ˂ S + N, S ˃, 

which is |𝑆𝑆|2. Similarly, the variance of Z given H1 is the covariance of ˂ S + N, S ˃, and 

we will prove this using known results. Let’s first revisit the key concepts before moving 

forward. 

Our definition states that Z is the inner product ⟨Y, S⟩. Since Z depends on N, it is a random 

variable. Now, what does the expectation of Z given H0 represent? Under H0, the value of 

Y is just N(t), so the expectation of Z given H0 is simply 𝐸𝐸[˂𝑁𝑁, 𝑆𝑆˃]. This is unsurprising 

because in this case, we are only measuring the noise, so Z contains only the noise 

component overlapping with S. When we express this as an integral, it becomes: 

𝐸𝐸 �� 𝑆𝑆(𝑡𝑡)𝑁𝑁(𝑡𝑡)
∞

−∞
 𝑑𝑑𝑑𝑑� = � 𝑆𝑆(𝑡𝑡)𝐸𝐸[𝑁𝑁(𝑡𝑡)]

∞

−∞
 𝑑𝑑𝑑𝑑 

Since the expectation of N(t) is zero (because the noise has a mean of zero), the entire 

expression evaluates to zero. 

I'll leave the integral form as is, but I won't repeat it for the subsequent cases. Now, because 

we need to find the error probability, we must carefully characterize the Gaussian 



distribution under H0. We know the mean is centered around zero. So, that guess was 

correct. Now, let’s determine the variance, which gives us the "spread" of the Gaussian. To 

do this, recall a previous result: the expectation of the inner product ˂ N, V1 ˃ ˂ N, V2 ˃, 

where V1 and V2 are any two fixed signals, is given by σ2 ˂  V1, V2 ˃ . We derived this result 

in a previous lecture, and it will be useful in the calculations ahead. 

Thus, the variance of Z given H0 can be determined. Under hypothesis H0, Y is simply N. 

Therefore, the variance is the covariance of ˂ N, S ˃ ˂ N, S ˃. Instead of writing this as an 

expectation, we can directly express it as a covariance, which simplifies things. We know 

that the covariance of X with itself, 𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋,𝑋𝑋), is the variance. So, we write this as Cov(˂ 

N, S ˃, ˂ N, S ˃), which simplifies to σ2|𝑆𝑆|2. This shows that the variance of the Gaussian 

under hypothesis H0 is characterized by 𝜎𝜎2|𝑆𝑆|2. In other words, when zero is transmitted, 

the distribution of Z is a Gaussian with mean 0 and variance 𝜎𝜎2|𝑆𝑆|2. 
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Our next task is to analyze the case under H1. In this scenario, Y(t) = S(t) + N(t). Therefore, 

𝑍𝑍 = ⟨𝑌𝑌, 𝑆𝑆⟩ = ⟨𝑆𝑆 + 𝑁𝑁, 𝑆𝑆⟩,  which expands to ⟨𝑆𝑆, 𝑆𝑆⟩ + ⟨𝑁𝑁, 𝑆𝑆⟩, 𝑜𝑜𝑜𝑜 |𝑆𝑆|2 + ⟨𝑁𝑁, 𝑆𝑆⟩.  What is the 



expectation of Z under H1? Since |𝑆𝑆|2  is a fixed number (because S is a deterministic 

signal), this becomes |𝑆𝑆|2 + 𝐸𝐸[⟨𝑁𝑁, 𝑆𝑆⟩]. We’ve already shown that 𝐸𝐸[⟨𝑁𝑁, 𝑆𝑆⟩] = 0. Thus, the 

expectation of Z under hypothesis H1 is |𝑆𝑆|2. 

To compute the variance of Z given H1, we again use the covariance approach. We need to 

compute the covariance of Z with itself, which is Cov(˂ S + N, S ˃, ˂ S + N, S ˃). Using 

the same covariance formula we derived earlier, this can be simplified. However, since the 

noise is zero-mean, we can directly apply the covariance formula, leading to the result. 

So, it doesn’t really matter – this result is the same as the covariance of N ˂  V1, V2 ˃ , which 

is 𝜎𝜎2⟨𝑉𝑉1,𝑉𝑉2⟩. Now, although the formula here isn't in the same form due to the extra S term, 

we can still utilize the linearity of the inner product. In fact, we can express this covariance 

as: 

𝐶𝐶𝐶𝐶𝐶𝐶(⟨𝑆𝑆, 𝑆𝑆⟩ + ⟨𝑁𝑁, 𝑆𝑆⟩, ⟨𝑆𝑆, 𝑆𝑆⟩ + ⟨𝑁𝑁, 𝑆𝑆⟩) 

Given that |𝑆𝑆|2  is fixed, we can simplify this by subtracting the fixed terms out when 

considering the covariance. So, what we’re left with is: 

𝐶𝐶𝐶𝐶𝐶𝐶(⟨𝑁𝑁, 𝑆𝑆⟩, ⟨𝑁𝑁, 𝑆𝑆⟩) = 𝜎𝜎2|𝑆𝑆|2 

This is, unsurprisingly, the same as our previous result. Therefore, we conclude that the 

Gaussian distribution under hypothesis H1 has a mean of |𝑆𝑆|2 and the same variance as the 

Gaussian distribution under H0. 

By symmetry, we can safely deduce that the midpoint between 0 and |𝑆𝑆|2 is |𝑆𝑆|2/2. Now, 

when it comes to making a decision based on the observation y, how do you determine 

which hypothesis is more likely? It turns out the decision process is quite simple: You just 

need to check which side of |𝑆𝑆|2/2 you are on. If you are on the right side of this midpoint, 

it is more likely that H1 occurred. Conversely, if you are on the left, H0 is more probable. 

In other words, if Z is closer to |𝑆𝑆|2, it is more likely that hypothesis H1 is true, meaning 

'1' was sent. On the other hand, if Z is closer to 0 – that is, to the left of |𝑆𝑆|2/2, you should 

conclude that '0' was sent. This is the optimal decision rule for binary signaling in this 

scenario. 



(Refer Slide Time: 26:47) 

 

However, even with the optimal decision rule, errors can still occur. Why is that? The noise 

might cause errors in the decision-making process. For example, under hypothesis H0, 

when '0' is sent, the noise could push the decision to the right side of |𝑆𝑆|2/2, leading you 

to incorrectly decide that '1' was sent. Similarly, under hypothesis H1, if '1' is sent, a large 

negative realization of the noise could cause the decision to fall to the left of |𝑆𝑆|2/2, 

making you incorrectly decide that '0' was sent. Thus, in both cases, there is a possibility 

of making an incorrect decision due to noise interference. 

These incorrect decisions are referred to as symbol errors. So, what we want to calculate 

now is the probability of making symbol errors under these conditions. Let’s go ahead and 

work this out.  

We'll start with defining the symbol error probability. To make this clearer, let me sketch 

it out. Here, I’ll draw the decision regions. First, under hypothesis H0, and then in another 

color, I’ll depict the region for hypothesis H1.  



Now, let’s label these key points: This point here represents |𝑆𝑆|2, which is the same as 

∫|S(t)|2dt. The midpoint is |𝑆𝑆|2/2, and here is the origin at 0.  

What is the probability of an error under hypothesis H0? An error occurs when '0' is sent, 

but the observation lands in the region beyond |𝑆𝑆|2/2. To determine this symbol error 

probability, we need to calculate the probability that, under hypothesis H0, the observation 

crosses |𝑆𝑆|2/2. 

Now, let’s calculate the probability of error. To do that, recall the characteristics of Z under 

hypothesis H0: it has a mean of 0 and a variance of 𝜎𝜎2|𝑆𝑆|2. Given this, we aim to compute 

the probability of error under hypothesis H0, denoted as 𝑃𝑃𝐸𝐸0. This probability corresponds 

to the area under the tail of the Gaussian distribution from |𝑆𝑆|2/2 to infinity. The formula 

for the error probability is: 

𝑃𝑃𝐸𝐸0 = �
1

𝜎𝜎|𝑆𝑆|√2π

∞

|𝑆𝑆|2/2
𝑒𝑒
− 𝑧𝑧2
2𝜎𝜎2|𝑆𝑆|2𝑑𝑑𝑑𝑑 

Here, we're applying the Gaussian distribution formula 1
𝜎𝜎√2π

𝑒𝑒−𝑥𝑥2/2 , adapted for our 

situation where the variance is 𝜎𝜎2|𝑆𝑆|2. The goal is to determine the probability that the 

random variable Z exceeds |𝑆𝑆|2/2. 

Now, to simplify the evaluation of this integral, we transform it into the standard normal 

form. Let’s make a substitution: 

𝑢𝑢 =
𝑧𝑧

𝜎𝜎|𝑆𝑆|
 

This substitution standardizes the variable Z by dividing it by its standard deviation. When 

𝑧𝑧 = |𝑆𝑆|2/2, the corresponding value of u becomes: 

𝑢𝑢 =
|𝑆𝑆|
2𝜎𝜎

 

Thus, the error probability 𝑃𝑃𝐸𝐸0 becomes: 



𝑃𝑃𝐸𝐸0 = �
1

√2π

∞

|𝑆𝑆|/2𝜎𝜎
𝑒𝑒−𝑢𝑢2/2𝑑𝑑𝑑𝑑 
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At this point, we recognize this as the Q-function, which represents the tail probability of 

the standard normal distribution. Therefore, we can express the error probability as: 

𝑃𝑃𝐸𝐸0 = 𝑄𝑄 �
|𝑆𝑆|
2𝜎𝜎�

 

The Q-function gives us the probability of a symbol error occurring when '0' is sent. You 

might also refer to this as the bit error probability, since we’re dealing with binary signals 

('0' and '1'). 

Now, let’s shift focus to the probability of error under hypothesis H1. Recall that, under H1, 

the distribution of Z has a mean of |𝑆𝑆|2 and the same variance, 𝜎𝜎2|𝑆𝑆|2. In this case, an error 

occurs if the observation falls to the left of |𝑆𝑆|2/2. Due to the symmetry of the Gaussian 

distributions, the area representing the error under H1 is the same as that under H0. 



Nevertheless, it is instructive to explicitly calculate this probability to verify the symmetry 

and ensure accuracy. 

Thus, by symmetry, the probability of error under hypothesis H1 is: 

𝑃𝑃𝐸𝐸1 = 𝑄𝑄 �
|𝑆𝑆|
2𝜎𝜎�

 

In both cases, whether hypothesis H0 or H1 holds, the probability of making a symbol error 

is captured by the same Q-function. This confirms that our intuition about the symmetry of 

the decision regions is correct. 

Let me write this down quickly so we can confirm that the error probability remains 

consistent. Under hypothesis H1, we know that the mean is |𝑆𝑆|2 and the variance is 𝜎𝜎2|𝑆𝑆|2. 

Therefore, the probability of error given hypothesis 1, denoted as 𝑃𝑃𝐸𝐸1 , is found by 

evaluating the probability that the observed value Z falls to the left of |𝑆𝑆|2/2.  
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Mathematically, this can be expressed as the integral: 



𝑃𝑃𝐸𝐸1 = �
1

𝜎𝜎|𝑆𝑆|√2π

|𝑆𝑆|2/2

−∞
𝑒𝑒
−
�𝑧𝑧−|𝑆𝑆|2�

2

2𝜎𝜎2|𝑆𝑆|2 𝑑𝑑𝑑𝑑 

Again, we apply a substitution to simplify this expression. Let: 

𝑢𝑢 =
𝑧𝑧 − |𝑆𝑆|2

𝜎𝜎|𝑆𝑆|
 

Then, 𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑
𝜎𝜎|𝑆𝑆|

, which takes care of the differential part of the integral. Now, we adjust 

the limits of integration. When 𝑧𝑧 = |𝑆𝑆|2/2, the corresponding value of u becomes: 

𝑢𝑢 =
|𝑆𝑆|2/2 − |𝑆𝑆|2

𝜎𝜎|𝑆𝑆|
= −

|𝑆𝑆|
2𝜎𝜎

 

Thus, the probability of error 𝑃𝑃𝐸𝐸1 becomes: 

𝑃𝑃𝐸𝐸1 = �
1

√2π

−|𝑆𝑆|/2𝜎𝜎

−∞
𝑒𝑒−𝑢𝑢2/2𝑑𝑑𝑑𝑑 

However, due to the symmetry of the Gaussian distribution, integrating from -∞ to -|𝑆𝑆|/2𝜎𝜎 

is equivalent to integrating from |𝑆𝑆|/2𝜎𝜎 to ∞. This results in: 

𝑃𝑃𝐸𝐸1 = 𝑄𝑄 �
|𝑆𝑆|
2𝜎𝜎�

 

So, the probability of error under hypothesis H1 is also 𝑄𝑄 �|𝑆𝑆|
2𝜎𝜎
�.  

Given that both hypotheses are equally probable, the overall probability of a symbol error 

(or bit error) is the average of 𝑃𝑃𝐸𝐸0 and 𝑃𝑃𝐸𝐸1, which are identical. Thus, the total probability 

of error becomes: 

𝑃𝑃𝐸𝐸 =
1
2

(𝑃𝑃𝐸𝐸0 + 𝑃𝑃𝐸𝐸1) = 𝑄𝑄 �
|𝑆𝑆|
2𝜎𝜎�

 

In conclusion, this lecture highlights a critical point: whenever you are dealing with an 

additive white Gaussian noise (AWGN) channel and binary signaling, the relationship 



between the signal and noise allows you to compute error probabilities quite easily. 

Symmetry is a powerful tool, wherever possible, leverage it to simplify your calculations. 

You won’t always need to work out the full integrals; sometimes, by inspection, you can 

directly identify the error probability. However, it's essential to proceed carefully. 
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Moreover, when evaluating metrics like Z (the inner product ˂𝑦𝑦, 𝑆𝑆˃), finding the decision 

threshold is key to determining the error probability. In our case, the decision point is at 

|𝑆𝑆|2/2.  If the noise pushes the observation Z exactly to this point, the decision is 

ambiguous, although the probability of the noise doing so is effectively zero. If the 

observation falls to the left, you conclude that '0' was sent; if it falls to the right, you 

conclude that '1' was sent.  

When the noise is large enough, symbol errors become inevitable, and the probability of 

making such errors is given by 𝑄𝑄 �|𝑆𝑆|
2𝜎𝜎
�, as we've calculated under the binary signaling 

framework, where '0' corresponds to zero being sent and '1' corresponds to |𝑆𝑆| being sent. 



In the next lecture, we'll extend this concept to binary signaling with two distinct signals, 

allowing us to compare and contrast the error probabilities. We'll also introduce discussions 

about energy per symbol, energy per bit, and how these factors influence the error rates in 

signaling systems. Thank you. 

 


