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  Welcome back to this lecture on Digital Communication Using GNU Radio.  My name
is  Kumar  Appiah  and  I  belong  to  the  Department  of  Electrical  Engineering  at  IIT
Bombay.  In this lecture, we are going to continue our discussion on demodulation and
signal  space.  If you remember, in the last lecture, we saw a detailed calculation of the
basis vectors  for a set of signals using Gram-Schmidt orthogonalization and I also made
some  remarks  about  how  you   can  sometimes  just  by  inspection  infer  some  of  the
orthogonal basis vectors.  Once we have a handle on the orthogonal basis vectors for the
signals, the key idea that  we are going to see is that the projection of the noise onto these
orthogonal basis vectors  is a sufficient statistic which in other words means that only
getting the numbers by integrating  with these size, integrating the noise with the size that
is enough to determine optimally  which symbol was sent or make the optimal choice.  So
let  us  look  at  projecting  the  signal  and  noise  onto  the  signal  space.

  So we have y(t)=si (t)+n (t)
with basis signals 

ψ1 , ψ2 up to ψn .

If we now consider 

y=[⟨y ,ψ1⟩ ,⟨y,ψ2⟩ , ... , ⟨y,ψn⟩ ]T ,

what this  gives you is, this gives you a vector which basically gives a set of numbers
obtained  by projecting y(t) onto ψ1 , projecting y(t)  onto ψ2 and so on.  In this case, I didn't add

the subscript  si , but you can just assume these  s s to be  si 's.  So you obtain

another set of n  numbers by projecting 



s(t) onto ψ1 , s(t) onto ψ2

and  so  on.

  This is fine because your  si(t)  was designed to be lying within the space of the

signal  ψ1  to ψn  and this is what we saw in the previous class that you constructed

your orthonormal  basis vectors ψ1  through ψn  to capture all the si 's.  But the

trouble  is  over  here.   Here  the  problem  is  that  n (t)  is  something  which  is  a

completely different beast.  Its signal obtained because of noise is not predictable and you
can most definitely say  that you cannot write n (t)  as a linear combination of ψ1 ,

ψ2 ,  ψ3 .   That  is  n (t)  definitely  has  some components  and variations  that

cannot be captured by  just expressing it as the linear combination of 

ψ1 , ψ2 up to ψn .

  This leads to the question which is by projecting n (t)  onto ψ1 , ψ2 and ψn ,

which is what  you are doing indirectly by projecting y  onto ψ1 ,  ψ2 ,  ψn ,

am I  losing  some information?   Is  it  that  some information  is  lost  when  doing this
particular operation that results in  your not being able to make the optimal decision on
which si  was sent?  The key idea is that we are trying to convert it to a vector problem

as we mentioned.  It is now instead of a waveform problem, we have converted it to a
vector problem.  What can we say about this  n  and its contribution to the vector
decision problem?  The first thing we are going to look at is what is the distribution ofn ?  If you remember we just did this particular exercise in a couple of lectures ago.  If
you now study the correlation

cov(⟨n ,ψk ⟩ , ⟨n ,ψl ⟩)=σ
2
⟨ψk ,ψl⟩ .

So, inner product 

⟨ψl ,ψl⟩=0 if k≠l and

⟨ψl ,ψl⟩=1 if k=l .

  So this n  is a Gaussian random vector consisting of iid entries.  The variance of each
component is  N0/2 .  In other words, you are going to get this vector  n1 ,  n2

and so on up to n .  Pardon me for the bad notation because this n  was for number,
this n  was for noise, but  all of these entries are iid.  In other words, the covariance
matrix is 



σ
2 I .

  So, these are iid entries.  So the first thing that we are going to note is whenever you
make a decision on which one  was sent and so on, you know, these ψ1 , ψ2 , ψn
capture that part of n (t)  into  n1 , n2  and you know and so on and these n s

are  orthogonal  because  your  ψ s  are  orthogonal.   That  is  the  first  thing  and  this
orthogonality translates to independence.  So in other words, the entries of n  are iid.
The  next  question  that  we  are  going  to  ask  is,  is  the  restriction  to  the  signal  space
optimal?   That  is  what  I  was  mentioning.

  By restricting n (t)  to just look at those parts of n of t that are along ψ1 , ψ2 ,

ψn , are we losing something?  Are we losing our ability to make an optimal decision

on which a ψ  was sent?  The key concept is that we are saying no.  The idea is that
no, we are not losing any information.   The part of  n (t)  that is not along  ψ1 ,

ψ2 ,  ψn  is actually irrelevant.  It is not at all, it has no bearing on your optimal

decision  to  decide  which  ψ  was  sent.   The  concept  can  be  also,  you know, this
concept is also known as the theorem of irrelevance  and you know, irrelevant statistics
and  so  on  and  it  is  not  very  difficult  to  see  how.

  What you are doing is, you are essentially, you have y(t) , you do not have n (t)
separately,  you have only y(t) .  You take y(t)  and project it onto ψ1 , ψ2 ,

ψn  and then find out the residual  signal that is you have y(t) , you project it onto

ψ1 , you project it onto ψ2 , then  construct the signal 

⟨y1 ,ψ1⟩ ψ1(t) , ⟨y2, ψ2 ⟩ ψ2 (t)
and so on and then take it away from y(t)  and see what is there.  So for example over

here, if you do that, 

y ⊥
(t)=y(t)−∑j=1

n
⟨y,ψ j⟩ ψ j(t) ,

That is, I am taking away that part of y  that is along the ψ j 's to get the residual

part and you know that your y  is actually si+n .  So, if you substitute it, you get 

y ⊥
(t)=y(t)−∑j=1

n
⟨si ,ψ j⟩ ψ j(t)−∑j=1

n
⟨n ,ψ j ⟩ψ j(t) .

  So, because your 



y=s+n ,

this  part  is  the  component  of  y  that  is  contributed   by  s s,  this  part  is  that
contributed by  n s, this part is fully captured while this  part is not fully captured.
How does this reflect?  Because if you now write y(t)=s(t)+n (t) ,

s(t)  and this particular part  will cancel directly because  s(t)  is fully captured,

this part is actually s(t) .  So, if you now look at 

y(t)−s(t) ,

you get n (t)−⟨n ,ψ j⟩ ψ j(t)
and let us call this n ⊥

(t)  , that is, that part of  the noise that is not along the part that

you  observe  which  is  along   ψ1 ,  ψ2 ,  ψn .   So,  we  are  saying  this  n
perpendicular  which is the part  that is lost  because of your projections  is irrelevant.
How?  The irrelevance of n ⊥

(t)  can be ascertained by looking at the covariance  ofn ⊥
(t)  and each of these n  and ψk 's, that is because these are the parts  that

are  going  to  determine  which  ψ  was  sent.

  So, let us look at that.  So if you now just evaluate the covariance of n ⊥
(t)  and the

part that is along  the ψk , you will find that that is 0.  In other words, you can just use

the fact that the n ⊥
(t)  is uncorrelated with  each of the components of n  which

you  get  by  projecting  n  along  ψ1 ,  ψ2 ,   ψk  and  this  uncorrelatedness

translates to independence and this means that this   n ⊥
(t)  is irrelevant.   So this

detailed proof is something we are not looking at over here, but you can look  at the
references and get them, but the key idea is that because the part that is not  along ψ1 ,

ψ2  is independent of the parts that actually matter when you compute your  matrix to

decide what is sent, this part is irrelevant.  So one remark that we want to make is that
whenever we perform this 

⟨s,ψi⟩ ,

if it is real signal, it is just integral, if it is complex then you have a star, it  does not
matter.

  This is called a correlation operation.  A correlation operation is basically where you
multiply two signals and evaluate the  integral maybe with a shift also, in this case we are



just  not  adding  a  shift  that  is   completely  fine,  but  because  we  are  dealing  with
communication systems which are also  signal processing systems in internally  many
operations or signal processing operations,  it is convenient to express these in the form
of a convolution.  That is because for example even from an implementation perspective,
if you implement some algorithms  on a DSP, convolution is often implemented in a very
efficient way.  So these DSPs are designed to perform convolution in hardware and they
are very fast and things  like that.  So given this, it is often the case that the matched
filtering  is  implemented  using  a  convolution.

  So to do this what you need to do is, you want to find, actually this should not ber i(t) .  So r i(τ) that is yes.  So let us find this 

r i(τ) which is a signal obtained by performing, 

∫
−∞

∞ y (τ) ψ ∗
(τ−t)d τ .

Why  is  it  ψ
∗
( τ−t ) ?   The  reason  is  because  you  are  essentially  to  perform

correlation  you  are  flipping  the   signal.   If  you  flip  and  convolve  that  is  same  as
correlation, because you know if you just do this kind  of, let me actually just rewrite it in
a  proper  way.

  You are essentially performing 

∫y (τ) ψ ∗
(t+τ)dt .

This actually will be 

y(t)∗ψ
∗

(−t) .

So this is like, maybe I will just express it in a correct way.  So this is equal to 

y(t)∗ψ
∗

(−t) .

That  is  what  is  happening.

  So correlation can be obtained by performing flipped convolution.  And if you want to
just evaluate this quantity, you need to just substitute your  t=0 .  If you substitute
your t=0 , you essentially get r i(0) .  So what you typically do is you perform the

convolution with the flipped version of ψ   and sample at the 0th point.  So what you
typically  have  is  you  have  a  bank  of  what  are  called  matched  filters.

  So what are these matched filters?  Basically you write ψ0  or ψ0
∗   depending on



whether it is real or complex.  ψ0 ,  ψ1 ,  ψ2  and you keep writing them up to

ψn−1(−t) .  Sometimes I use ψ1  to ψn .  In this case I use ψ0  to ψn−1 .

So in this case you are going to get now several numbers r0 , r1  up to rn  which

are  essentially   the  inner  products  with  each  of  the  basis  elements.

  So this essentially is going to give you a set of numbers which you can collate into

[
r0
⋮rn−1

]
and this vector is all that you are going to need to make  an optimal decision.  Why?
Because even though the part of y(t)  which is noise is not fully captured along ψ0

to ψn−1 , it is irrelevant to your decision making.  There is one alternate interpretation

of all this matched filtering and you know irrelevance.  These so called matched filters
collect all the necessary statistics to get the sufficient  statistics from the noisy signal and
throw away what is not needed.  Let me give you a quick intuition as to why that is the
case.

  It supports that the signal you send is like something like this.  Then what happens is
that because of noise you end up getting something like this and  intuitively the optimal
thing to do is to average these things, average these out because  if you just average these
out then you can make a good decision on whether you are sending  this  or you are
sending 0 or something like that.  What does the matched filter do?  The matched filter is
actually this.  You are multiplying and integrating which is the same as averaging.  So the
matched filter actually is designed in a way to collect all the necessary information  from
the  noisy  signal  to  make  sure  that  you  get  the  sufficient  statistics.

  So that is the key intuition that you have to take away from this.  So this is the concept
of matched filters.  It's provided with different perspectives like you know optimal in
terms of decision  making and so on.  But if you want to look at it from the correlation
perspective to recover  your original  symbol  that's  also the same result.   Now let  us
briefly  look  at  optimal  reception  in  the  context  of  AWGN  channels.

  We are now performing M -ary signaling in an AWGN channel.  So you have y=si+n
and n  is as we just discussed a random vector with  0 mean and identity covariance of
course identity multiplied by σ

2 .  Now there are two ways to find the optimal symbol
sent and both are very related.  The first is the maximum likelihood decision rule.  In the
maximum likelihood  decision  case  what  we  are  saying  is  why do we maximize  the



probability  that we want to find that i  such that this  y  was the most likely one.

  The second one is the minimum probability of error in which case you also take into
account  the  prior  that  is  suppose  that  the  probability  of  sending 0 is  higher  and the
probability of sending 1 is lower.  The minimum probability of error actually performs a
modification for the priors.  I will just try to give you an intuition as to why these rules
come about.  So if you remember the joint distribution I mean your  n  is actually
Gaussian with 0 and σ

2 I  as the variance which means your r  or you  know in this
particular case we use the notation r  where r  vector is actually si+n
that is what we got which means your n  is essentiallyr−si .

So  let  us  just  check  what  symbol  we  are  using  there.

  We are using y , y−si .

So let us write the joint distribution of n .  So 

fN (n)= 1

√(2 π)
n /2

σ
e (y−si )HI( y−si )

2σ
2

So this is essentially what you have and this is the likelihood function also because  I
have  substituted  for  N  in  terms  of  these  and  I  want  to  maximize  this.

  So you want to maximize this.  This particular thing is a constant that does not depend
on i .  I want to now find which i  was sent.  So what I am going to do is I am just
going to maximize i=0 , 1, 2,. .. ,M−1

because there is just identity it is y−si
it is essentially 

(y−si)T(y−si)
that can be written as 



‖y−si‖2

2σ
2 .

But here this does not depend on i  so all I need to do is I can take log and if I take  log
then I get 

maxi−‖y−si‖2
=mini‖y−si‖2

This  translates  to  minimum  distance  decoding.

  Why?  Because you are saying let us just assume that my si 's are vectors in some

space and  my y  is a vector find me that si  that is closest to this y  in terms of

squared distance.   This  means the maximum likelihood decoder  is  just  the minimum
distance decoder.  This is for ML.  Similarly for MPE it is not very difficult.  For MPE all
you need to do is you need to take into account the prior probability of  what was sent.

  So without going into too much details I am just going to write it as

ce−‖y−si‖2

2σ
2

π(i)
 where  π (i)  is the prior probability.  That means if you have a higher probability of

sending 0 let us say that your messages  are 0 and 1.  Let us say the probability of sending
0 is 0.8 and the probability of sending 1 is 0.2.  That is captured in π (i) .  So I want to

now maximize this over i  which is same as maximizing I am just going to take  log
over here some monotonic function ignoring the constants 

−‖y−si‖2
+logπ (i) .

This is log with respect to log to the base e.  This is same as 

mini‖y−si‖2
−2σ

2 logπ(i ) .

  This  is  the MPE rule.   The minimum probability  of error  rule.   This  comes about
because see let me give you an intuition.  If you have a very very high probability of 1
being or 0 being sent let us say.  So even if you get something which is closer to 1 it
could be because 1 was actually sent  but the noise event was higher.  So the minimum
probability  of  error  essentially  takes  that  into  account.

  So I am skipping over the complete derivation but the key intuition is that if you write
the likelihood function and you want to maximize it, the maximizing of the likelihood
function  essentially results in this particular result and if you go back to our slides it is



very  evident this delta ML involves finding the argmin means just find me that i .  So
it finds that i  that minimizes 

‖y−si‖2 .

This is same as minimum distance decoding.  Another way to interpret this is you can
actually expand this.  This becomes 

yT y+siT si−2 ⟨y ,si ⟩ .

  So if you now look at 

yT y
that does not have  i  in it.  You take that away and subtract so maybe I just do this
once for you.  If you look at 

‖y−si‖2

square that is equal to 

(y−si)T(y−si)
replace Hermitian for complex is equal to 

yT y+siT si−2 ⟨y ,si ⟩ .

This can be done either using the vectors or using the function integration also.  If you
want  to  know max,  if  you now want  to  minimize  over  this,  you know you want  to
minimize   over  this.

  That is same as maximizing and you take this away and put a negative sign and you
divide  by 2 you get 

⟨y ,si ⟩−‖si‖2

2
.

This is exactly what is being written over here you know and over here there are some
advantages if you have constant enveloping meaning if you are all the ‖si‖2 s are  the

same you can just find ⟨y ,si ⟩  and find out which one was sent and you  can just do a

similar modification over here to get what was the best you know minimum  probability
of error decision.  The only difference is the minimum probability of error takes into
account  the priors.   If  all  π (i) 's  are  equal  that  is  for  example  if  you have  M
symbols and each of them has  a probability of  1/M  then this rule reduces to this



because there is no dependence  on i .  So, the MPE and ML are the same when all the
original symbols are equally probable which  is the case in the most general situations.

  If you want to think of some situation where you know you do not have equal priors
typically  you know because these coding is performed to have the same priors for all the
signals.  So, like if you have so for example some data where there are many many zeros
and few ones  many many zeros and few ones typically they compress the data to have
equal number of  zeros and ones while they capture the original data.  But let us suppose
that you have a situation where you know it is one only when it rains  but zero when it
does not something like that then it may be more likely to have you know  days when it
does not rain you know.  So, you have more zeros and ones and things like that or you are
capturing a signal from  a sensor and it detects some you know whenever there is an
earthquake, earthquakes are rare  so you have more zeros.  Things like that may happen
but typically it is the data is encoded in a way so that  you have equal probable symbols.

  So, this will be more common but this does have its uses whenever it arises.  So, if you
want a formal proof of this is just exactly what we did right now.  y  is a Gaussian
random variable and its mean is si  and covariance matrix is σ

2 I .  So, if you write

the distribution of y∣i  is you know under the hypothesis  i  is 

1

(2πσ
2
)
n/2 e−‖y−s i‖2

2 σ
2

.

I  just  expanded  that  ‖y−si‖2 by  applying  that  Cx−1 formula  for  you.

  The ML rule wants you to maximize the quantity with respect to  i  and you know
since log is  monotonic you can maximize with respect to the log of this function as well.
So, you can clearly see that only y−si  matters.  In the case where you have MPE just

add the π (i)  over here that accounts for the prior  and your set.  That is basically the

proof  that  the  minimum  distance  decoder  is  optimal  in  the  case  of   additive  white
Gaussian noise.  This is an important result and allows you to get a fair idea of what the
so  called  decision   regions  are.

  So, to find out which  si  was sent if you have  y .  Let us look at a very quick

example.  If we consider on off signaling your y(t)  is essentially s(t)+n (t)  and

if  you were sent nothing your y(t)  is n (t) .  So, hypothesis 1 is that some signal

was sent,  hypothesis 0 is that nothing was sent.  So, in this  particular case of binary
signaling  we  are  considering  on  off  signaling.



  So, there is either something sent or nothing sent.  Let us compute a statistic  Z
which is 

⟨y ,s ⟩ .

It makes sense because  see here what you expect is a signal of about 

 ‖s‖2

while in the second case you  expect a signal which is around 0.  Because in the first case
let us say you send a square wave you want a signal with amplitude  around that square
wave.   In  the  second  case  you  want  a  signal  whose  amplitude  is  around  0.

  That is what you expect.  So, the decision rule is to find the energy of the resulting
signal and see whether the  resulting signals energy is above or below ‖s‖2

/2 .  That is
the intuition.  We do not know if this is correct, but we can use the ML to verify it and if
you look  at the ML and if you perform the ML in this case it is very easy because you
have only  a vector y  and you have to decide whether it is your basically your si s

are 0 or  you know s(t) .  So, if you now write the ML probabilities you will easily

find that probability of making  an error given that 1 was sent was when you sent 1, but
for some reason you decided that  0 was sent and similarly you sent 0, but you decided
for some reason that 1 was sent.  So, for example if you have the situation where you
send this because of noise it essentially  comes like this then you make a mistake or if
you send 0 because of noise it becomes  something like this then you make a mistake.

  So, these are actually in hypothesis testing these are the so called type there are these
type 1, type 2 errors it is very similar.  What is the probability that you make a mistake
that is what is the probability that you actually  sent s(t)  but you decided that 0 was

sent or what is the probability that you sent 0  and decided that  s(t)  was sent.  So,

these are some things that we will have to see for various modulation schemes as well
and we will continue this in the forthcoming lectures.  Thank you.  Thank you.


