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  Hello, so welcome back to this lecture on Digital Communication Using GNU Radio.
My name is Kumar Appiah and I belong to the Department of Electrical Engineering at
IIT  Bombay.  In this lecture, we are going to continue our look at demodulation with a
signal space  picture in mind.  So if you remember in the last lecture, we were talking
about how you can obtain a set  of orthonormal basis signals from a set of s1 , s2  up through sM−1  

and you need to obtain a set of orthonormal basis signals.  To do this, we need to use the
Gram-Schmidt  orthogonalization  process  which  takes  the   first  signal,  finds  the
component of the second signal that is not along the first signal  to get a new signal, finds
the component of the third signal that is not along the first  two and repeats.  At the end,
you  get  a  basis  set.

  So let's actually do this for a specific example.  So in this particular example, you have
four signals.  I have not used the s0 , s1  notation.  In this case, 

s1(t) , s2(t) , s3(t) , s4(t) .

  s1(t)  is  essentially  1 from 0 to  2 seconds.   s2(t) is  1  from -1 to 1 second.s3(t)  is 2 from 0 to 1 second and s4(t)  is -1 from -1 to 0, 1 from  0 to 1 and -1

from 1 to 2.  So let us now see how you can perform the Gram-Schmidt orthogonalization
for  this.   I  will  make  a  remark.

  The resulting orthonormal basis depends on which signals you choose in which order.
We are going to choose them in this order 1, 2, 3, 4.  If you choose another order, you
will get a different basis set that is also equally  correct and there is no problem.  The
basis set that you get from Gram-Schmidt orthogonalization is not unique.   So let  us
actually  perform  Gram-Schmidt  orthogonalization  on  these  signals.



  For reference, I have put them over here, s1(t) , s2(t) , s3(t) , s4(t) .

All we need to know is where they are non-zero.  So our basically times of interest are
between -1 second and 2 seconds.  The first signal is non-zero between 0 and 2.  The
second  is  non-zero  between  -1  and  1.

  Third is 2 between 0 and 1.  The fourth is like -1 in the first interval, 1 in the second
interval,  -1  in  the  third   interval.   Let  us  now  carefully  perform  Gram-Schmidt
orthogonalization on this signal set.  So now what we are going to do is, we are going to
first  take  our  ψ1 .   Let  us  make  it  blue  so  that  you  know  it  is  nicer.

  Let me rewrite it over here.  So I am going to write 

ψ1 (t)  directly and ψ1 (t) , let me just get rid of this  because it is confusing.  So 

ψ1 (t)=s1(t)/‖s1‖ .

This is very easy because I am just going to choose my first signal as my first orthogonal
vector or first basis element but just scale it to make it unit energy.  So if you now look at
inner  product  like  ‖s1‖ ,  that  is  very  easy.

  If you just calculate 

∫s12(t)dt ,

I am dealing with real signals minus  infinity to infinity, it is very evident that you can
see that it is over here, it is 1  from 0 to 2, so this integral is going to be 2.  Therefore, my 

ψ1 (t) ,

if I draw it, is very simple between 0 to 2, it is like this  is actually ‖s1‖2 .  So if you

substitute ‖s1‖  over here, it is 1/√2 , so this amplitude will be  1/√2 .  So we

have our ψ1 .  The ψ1  is just a scaled version of s1 , it is just s1  except that it

is  being  scaled   to  have  unit  energy.

  That is your ψ1 .  So now the next task is to obtain ψ2 .  To obtain ψ2 , we will

first go for an intermediate function called ϕ1  that essentially find  you a signal that is

orthogonal to ψ1 , but has the rest of s2  in it, so let us do that.  So I am going to

define 



ϕ2(t)=s2(t)–⟨s2 ,ψ1 ⟩ψ1(t) .  

So  this  is  actually  very  interesting.

  The first part says ϕ2(t)  is s2(t) , but I want to take out that part of s2(t)  that

is along  ψ1 .  So now needless to say, if you find 

⟨ϕ2 ,ψ1⟩=⟨s2 ,ψ1⟩−⟨s2 ,ψ1⟩⟨ ψ1 ,ψ1⟩ .

But what is ⟨ψ1 ,ψ1 ⟩ ?  ⟨ψ1 ,ψ1 ⟩  is 1 because we chose it in that manner.  It is 

s1(t)/‖s1‖ ,

so  this  goes  away.   So  if  you  now  subtract,  you  get  this  equal  to  0.

  In other words,  ϕ2(t)  is a signal that is specifically designed to be orthogonal to

ψ1  and have  the remaining part of s2(t)  in it.  Let me issue a warning over here.

If s2(t)  is actually just a scaled version of s1(t) , then you will get ϕ2(t)  to be

0,  which is completely fine in which case you can just ignore it and move on to the next
signal because ϕ2(t)  is just a scaled version of s1(t) .  So if your s2(t)  is just a

scaled version of  s1(t) , everything is going to be captured over  here and you are

essentially  going  to  get  0.   So  that  is  something  you  have  to  keep  in  mind.

  I am going to keep this part over here.  So let us now move further.  I want to find
ϕ2(t) .  So 

ϕ2(t)=s2(t)–⟨s2 ,ψ1 ⟩ψ1(t) .

So  what  is  ⟨s2,ψ1⟩ ?   So  ψ1  is  this,  ψ2  of,  you  know,  s2(t)  is  this.

  You can see that ψ1  is non-zero only from 0 to 2, while over here, this is between -1

to 1 and the only overlapping area is the part between 0 and 1.  So if you now perform the

∫s2(t)ψ1(t)dt ,

only the part between 0 and  1 is active and that part, if you integrate, you are going to get
just  1/√2 .  So you are just going to get  1/√2 .  That is because if you multiply

ψ1  and s2 , you are only going to get this particular  part scaled by 1/√2  and if

you integrate, you get 1/√2 .  So this means that your 

ϕ2(t )=s2(t)−ψ1(t)/√2



and  let  us  actually   use  a  pictorial  representation  and  draw  it.

  So it is s2(t)−ψ1(t)/√2 .

So s2(t)  looks like this.  I am not drawing the x axis marks.  So it is all the time and

this  is  actually  s2(t) .   Let  us  subtract  ψ1 /√2 .

  ψ1  is over here.  It is  1/√2  everywhere.  If I write it in this way, it is 0, 1, 2,

amplitude is half.  So if I subtract, what do I get?  I am just going to draw the resulting
signal.  It is 1 over here and over here, the value is 1 and the value is here.  I am going to
subtract  it.

  I will get half and finally in the third part, the value over here is 0, value over here  is
half.  If I subtract, I get minus half.  So minus 1, half, minus half.  So this is my ϕ2(t) .

And remember, ϕ2(t)  is just a signal that has the part of s2(t)  that is orthogonal to

ψ1 .

  But it is not unit norm.  So to get my ψ2 , which is the actual basis vector element, I

need to just normalize this.  I need to just do ψ2 (t)=ϕ2(t) /‖ϕ2‖ .  So if you want to

do this 

∫ϕ2
2
(t)dt ,

it is very easy to quickly do it.  Amplitude here is 1 and this is 1 in length, so it is 1
square.   Similarly  (1/2)

2
+(1/2)

2  .

  So it is 

12
+(1/2)

2
+(1/2)

2 .

So let me just write it down.  

∫ϕ2
2
(t)dt=1+1/4+1 /4=3/2 .

So ‖ϕ2‖=√3/2 .

  So I am just going to get this as √2/3 , this to be the root times ϕ2(t) .  So let us

now draw our ψ2  in a very neat way.  ψ2 (t)  is essentially ϕ2(t) , which is over

here, except that it is scaled by √2/3 .  So let us draw this and then it is half of this,
half  of  this.   I  am  deliberately  not  drawing  the  x  axis  points.



  It is minus 1, 0, 1, 2.  This is minus, sorry this is not minus, this is √2/3 .  This part
is  √1/6 ,  which  you can  evaluate.   It  will  be  √1/6 .   Why?  It  is  half  times

√2/3 .   That  is  half,  it  is  like  half  times  √2/3  is  √2/12 .

  That is √1/6 .  This is −√1/6 .  If you want to now just do a sanity check, this
should, the square of  ψ2  should integrate  to 1.  If you square it over here, you get

two-thirds  plus  one-sixth  plus  one-sixth.   Add  those,  you  get  1.

  That  is  the  first  point.   Second,  ψ2  should  be  orthogonal  to  ψ1 .   ψ1  is

essentially the same thing between 0 and 2.  ψ2  is actually antipodal between 0 and 2.

So the overlap will be 0.  So ψ2  is an orthogonal signal, orthonormal signal, ψ2  is

a  unit  energy  signal  and  orthogonal   to  ψ1 .

  So ψ2  is the second element of our basis vector.  Fine.  So we have done ψ1  and

ψ2 .   Let  us  look  at  ψ3 .

  So for ψ3 , we need to find ϕ3 .  s3  is 2 between 0 and 1.  So 2 between 0 and

1.   Fine.   So  how  do  we  do  this  now?   2  between  0  and  1.

  Let me just draw this.  This is my s3(t) .  The value is 2.  My ψ2  is here and

maybe I will just try to get ψ1 .  So I am just going to copy this and let us paste it over

here.   So  this  is  my  ψ1 ,  this  is  my  ψ2  and  we  now  have  this  s3 .

  So I am going to write ϕ3  first.  ϕ3(t)  is again for Gram-Schmidt, remember it iss3  without the components along ψ1   and ψ2 .  So it is 

s3(t)−⟨s3 ,ψ1⟩ ψ1(t)−⟨s3 ,ψ2 ⟩ψ2(t) .

So now I am not going to do this, but if you take inner product of 

ϕ3 with ψ1 ,

that  is going to be 

⟨s3,ψ1⟩−⟨s3 ,ψ1⟩

and it will become 1  and anyway  ⟨ψ2 ,ψ1 ⟩  is 0.  So ϕ3  is orthogonal to ψ1

and similarly  ϕ3  will be orthogonal to  ψ2  which is what  you want because you

want a signal which has that part of s3  that is not in ψ1  and not  captured in ψ2

as  well.



  So I am not going to do that.  I am now just going to find ϕ3  and then make it unit

energy so that I get the third  component.  So now let us do this.  So I have these signals
over here.  Let us now carefully just find 

⟨s3,ψ1⟩ , ⟨s3,ψ2⟩ .

  So ψ1  is here,  ⟨s3,ψ1⟩ .  I am just going to look at the pictures and do this for

you.  So if you look at ⟨s3,ψ1⟩ , this is 2 between 0 and 1.  This is 1/√2  between

0 and 1.  So the common part is only 0 and 1 and you are just going to get 2 multiplied by
1/√2 .  So that is going to be I think √2  because you are multiplying between 0

and  1.

  The value is 2 here.  The value is 1/√2  here.  So √2  is the result.  

⟨s3,ψ2⟩

is also easy.  So ψ2  is over here and it is √1/6  between 0 and 1 which is the area

that matters.  If you now perform the multiplication and integration between 0 and 1,
2/√6  will  be  the  result  which  is  √4/6  which  is  √2/3 .

  Now your task is to subtract these out with the appropriate scaling.  That is 

⟨s3,ψ1⟩ ψ1 , ⟨s3,ψ2⟩ ψ2 .

So let us do this.  So inner product ⟨s3,ψ1⟩ ψ1  is going to be √2ψ1 that is going to

be   you  have  ψ1  over  here.

  If it is √2  times it is actually very easy.  From 0 to 2 it is 1.  Similarly 

√2/3ψ2 , ψ2

is also very easy.  √2/3ψ2  is going to be if you now multiply this part by 2/3

you get 2/3 .  If you multiply √1/6 by 2/3  you are going to get you have to
multiply √2/3 , 

(1/√6)√2/3=√2/18=√1 /9=1/3 .

So  you  get  1/3  and  then  here  you  get  −1/3 .

  Why?  Because it is −√1/6  here.  I am deliberately not writing the x axis but we
really want this is -1, 0, 1, 2,  -1, 0, 1, 2.  Now you need to add these and subtract it from



s3 .  So let us actually do this.  If I add these I am going to get, let us carefully add

them.  In this part between -1 and 0 there is no contribution from the first signal so I  am
just  going  to  write  2/3 .

  In  the  second part  there  is  a  contribution  from here  that  is  1  and here  there  is  a
contribution   of  1/3 .   So  you  get  1+1/3=4/3 .   In  the  third  part  there  is
1−1 /3=2/3 .  This is going to be the combination of these two.  Now you have to

subtract  this  from  your  s2(t)  which  is  this.

  Now it is very easy to subtract because s2(t)  affects only the parts between 0 and  1

and if you now subtract you have this  2/3  becomes negative, this  2/3  becomes
negative and this 4/3  is going to get subtracted from 2.  So you are going to get 

ϕ3(t) to  be  −2/3  and  over  here  you  will  get  −2/3  and  over  here  the

amplitude is going to be 2−4/3 , 2−4/3 is just  (6−4) /3 , you are just going

to  get  2/3 .   This  is  your  ϕ3(t) .   So  now if  this  is  your  ϕ3(t)  which  is

−2/3 , −2/3 , it is like −2/3 , 2/3 , −2/3 , have a look at your s4 .

This is actually -1, 1, -1 and your ϕ3  looks a lot like s4  and now if you want  to

scale this to make it unit energy, this part is if you do ϕ3
2 , this part  is going to give

you  an  integration  contribution  of  I  think  4/9 ,  this  will  be  4/9 .

  So you are essentially going to get 12/9 .  12/9  is going to be I think 4/3 ,
4/3 , so you have to multiply by √3/2 .  So you are going to get 

ψ3 (t) as, so 4/9 ,  4/9 ,  4/9 ,  12/9 , so 3 by,  12/9 , so if you take

the  square  root,  this  is  actually  going  to  be  4/3 ,  you will   have  to  multiply  by

√3/2 .   So  let  us  multiply  by √3/2 .   So  this  part  is  going  to  be  −2/3

multiplied by  √3/2 .  So  2/3  multiplied by  √3/2 , this is going to give you

√3 ,  this  is  going   to  give  you,  it  is  1/√3 .

  So let us now use our eraser and cancel this rough area out.  So you are going to get
−1/√3 ,  √3 ,  −1/√3 .   That  makes  complete  sense  because  if  you  now

integrate ψ3
2 , you get one third  plus one third plus one third that works out to 1.  Now

the question is  do we have to worry about  ψ4 .   Now in the case of  ψ4 ,  what

happens  is  something  which  is  very  interesting.

  It is actually just a scaled version of ψ3 .  So if you take 

⟨s4 ,ψ3⟩



and if you subtract that out from s4 , you  will get 0, which means s4  is essentially

a linear combination of these three waveforms.  So in this case, you do not need another
basis signal.  ψ1 , ψ2 , ψ3  capture this four signal system.  So that is something

which  is  very  very  obvious  and  interesting.   So  this  is  a  full  Gram-Schmidt
orthogonalization  process  that  we  have  performed  for  these  signals.

  But there is just some extension which I want to talk about.  The one thing is in this
particular case, we were dealing with waveforms, but we could  have got away with just
dealing with vectors.  Why?  The reason is because you have these signals, but they have
a nice property in that they  vary only at let's say 0, they vary only between, they don't
vary between -1 and 0, they  don't vary between 0 and 1, they don't vary between 1 and 2.
Their values vary only at 0 and at 1.  So you can actually treat these as three dimensional
vectors.

  So for example, I can as well write this as [
0
1
1 ] .  Why?  Because this is a 0, 1, 1.  This

I can write as [
1
1
0 ] .  This I can write as here as [

0
2
0 ] .  I am going to write this as 0, 2,

0  and  I  am  going  to  write  this  as  [
−1
1

−1] .

So if I now look at these vectors and if I perform Gram-Schmidt orthogonalization on
these vectors as opposed to signals, I will get the same set of vectors.  That is, if you now

look at ψ1 , I will actually get [
0

1 /√2
1 /√2] .  If you use ψ2 , if you look at ψ2 , you

are going to get [
√2 /3
1 /√6

−1/√6]  and if you look at ψ3 , you are going to get [
−1/√3
1 /√3

−1/√3] .

You  will  get  the  same  result  if  you  use  vectors  also.

  There  is  one  final  remark  that  I  wish  to  make.   First  of  all,  Gram-Schmidt
orthogonalization is necessary when you have these kinds of  signals but of course, in this
case these were rectangular signals.  The same trick of vectorizing would work even if
you had sinc or some other waveforms if  you can identify it carefully.  But there is an
interesting observation that you can make in order to not have to do all  this work.  What
is it?  The signal varies only between -1, 0, 0, 1, 1, 2.  So why do I need any other special



basis vectors?  Let me give you a set of basis vectors without having to do any such
work.

  By the way, let us just try to copy this.  So let me just take this particular part.  So I am
just going to…  Okay, so let me just talk about it below.  Okay, so now if you now look
at the same set of signals that is 0, 2, sorry this is 1,  0, 0, 2, -1, 1, the third one is 2, 0 and
the  fourth  one  is  -1,  1.   So  here  is  a  trick  which  we  will  play.

  We will just write three basis signals directly.  What is the observation?  These signals
do not vary between -1 and 0.  They do not vary between 0 and 1, between 0 and 2.  We
just  need  to  construct  three  such  signals.

  Here are three such signals.  So this is another basis vector.  

ψ1 (t)=1

between -1 and 0.  

ψ2 (t)=1

between 0 and 1.  

ψ3 (t)=1

between 1 and 2.  So this was a construction where you essentially just did not have to do
Gram-Schmidt orthogonalization  and you were able to infer ψ1 , ψ2 , ψ3  almost

by observation because if you look  at this particular signal construction, these are time
orthogonal meaning they have no overlap  in time which means that they are orthogonal
and they are one in amplitude for one second  duration which automatically means that
they  are  going  to  be  unit  energy.

  So in this particular basis we have the same vectors which we talked about.  In this case

this will be [
0
1
1 ] .  This will be [

1
1
0 ] .  Let me actually write them in different colors

just so that you know things will be much  easier to infer.  So let us choose something
like  a  red  color.

  This will be  [
0
1
1 ]  because it is  ψ2 (t)+ψ3(t) .  This will be  [

1
1
0 ]  because this



signal is ψ1 (t)+ψ2(t) .  This will be [
0
2
0 ]  because this signal is just 2ψ2(t)  and

finally this signal  let me just point an arrow here and this signal is minus 1, 0, sorry it

will be  [
−1
1

−1] .  Why?  It is essentially take  ψ1 , flip it, take  ψ2 , keep it, take

ψ3 , flip it.  So sometimes by observation you are able to infer a basis without having

to  do  Gram-Schmidt   as  well  or  you  can  do  a  hybrid.

  You can guess some of them and not get others and things like that.  So while the Gram-
Schmidt orthogonalization process is a very systematic way of finding  orthonormal basis
vectors, there are some situations where you can find basis vectors  using just observation
or other intuition.  The basis vectors you obtain in this manner are going to be equivalent
in every other  way in the sense that your representation of these vectors is going to be
different.  For example, if you look at this particular basis vector, in this basis vector, for
example  if you take ψ1 , your original vector is going to be, original vector had 1, so

it  is going to be √2  times √2,0,0 .  That is going to be the representation of the
original  s1 .

  Notice that the energy or the sum square of this is 2.  Over here also the sum square is 2.
Similarly, let us look at the second vector.  Where is your  ψ2 ?  It is a little more

complicated for the ψ2  case.  So your ψ2  is √2/3,1/√6 ,−1 /√6 .  Now in this

case, this part has to cancel and you have to essentially scale it appropriately,  but if you
now represent the vector in the same manner, you will again find that the  energy is the
same.

  So even though you are using a different basis, all your computations and results are the
same and this leads to a very important conclusion.  The basis vectors themselves do not
really matter because you can actually use different  basis vectors depending on your
convenience as long as you keep the basis vectors orthonormal,  your performance and all
other design aspects are going to be the same.   So the conclusion from this exercise
where we did this gram-schmidt orthogonalization is  that the first, the basis vectors are,
the number of basis vector signals, the number  of basis signals ψ1 , ψ2  is always

going to be less than or equal to the number of  signals.  In this case, you had four signals
but  only  three  orthonormal  signals  that  captured  this.

  The second thing is that these orthonormal basis are not unique.  You can come up with
any other one.  For example, even if you did gram-schmidt orthonormalization using this
signal as the  first, then you will actually get 1 0 0.  You will get the 1 between 0 and 1 as



the first basis vector and then if you choose  this one, you will get the second and in fact
you will get the basis vector that we  wrote over here without having to do much work
using gram-schmidt as well.  So just keep these things in mind when you perform gram-
schmidt  orthogonalization  and  wherever  possible  you can  infer  the  orthogonal  basis
using your intuition or use a combination  of gram-schmidt and your intuition whichever
works best.  Thank you.  Thank you.


