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  Hello, welcome back to this lecture on Digital Communication using GNU radio.  My
name is Kumar Appiah.   I belong to the Department  of Electrical  Engineering at IIT
Bombay.  So in this lecture, we are going to look closely at signal space again, something
we have seen  earlier but with the demodulation perspective in mind and we will see how
the use of signal  space to convert your waveforms into statistics or numbers makes the
demodulation process  much easier.  So now if you look at  what we will  see in this
lecture, we are going to determine optimal  receivers for M -ary signalling in additive
white Gaussian noise channels.  In particular, rather than just sending one bit, if we send
one of M  symbols, which symbol  was sent, the decision to make which symbol was
sent at the receiver, how to do that optimally  is something we will see in this lecture
under  additive  white  Gaussian  noise.

  We  will  use  the  concepts  of  hypothesis  testing,  signal  space  and  the  concept  of
irrelevance  of some parts of the statistic that we do not need.  In particular, we will show
that only that part of noise which is along the components  of the signal matter when you
want to decide which symbol was sent.  We will see this closely in this lecture.  We will
also look at the performance of various detectors and we will also find out how we  can
compute  symbol  error  probabilities.

  So these concepts will take a bit of time.  So we will see this over a few upcoming
lectures.  So the signal space approach is something we have already seen.  Recall that
whenever we want to send messages, one of let us say M messages, these M messages
are sent as signals.  That is for message 1, there is a potential waveform that is sent.

  For  message  2,  there  is  a  different  waveform and  at  the  receiver,  your  task  is  to
determine  which message was sent by looking at the received waveform.  Now this is the
process of demodulation as we have seen, but the problem is that the  received waveform
is never an exact replication because the signal invariably undergoes some  or the other
transformation because it goes through a medium and there is always noise  addition at
the end.  So that means that the receiver has only a distorted copy of the waveform.  So



the question is signals are complicated because if you start looking at modifications  of
the signal, there is an infinite set of modifications.  For example, I can modify the signal
at  this  location,  this  location,  this  location  and   there  is  a  massive  number  of
modifications  that  one  can  make.

  So the question is what is the best guess for what was sent given this received signal.
Of course, the assumption we are going to make is we have additive Gaussian noise that
is the message to white meaning with time there is no correlation.  So if we look at theseHi 's, that is the question we are asking is you are observing  y(t)  which is 

si(t)+n(t) , i  is number, i  is you know 0, 1, 2 up to M−1 , one of those,

the question is given y(t)  which si  was sent.  That is the same as saying which

message  was  sent.   n (t)  is  white  Gaussian  noise  which  is  added  and its  power

spectral density as we discussed  is defined as  N0/2  because it is always  N0/2

across  one  real  dimension.

  So in the signal space approach, we have seen the signal space approach with regard to
signal  design and you know waveform design but now at the receiver we have to now
appeal to the  same tools to find out what signal was actually sent.  So linear processing
of a Gaussian of Gaussian noise actually yields a Gaussian random variable.  Why does
this happen?  So let us say that you receive  y(t)  and you perform some you know

integration or filtering  with  y(t) , the  n (t)  component undergoes that filtering

because of its fact because  of the fact that it is being added when you construct y(t)
and that results in a number  that if you integrate  n (t)  with respect to you knowv(t)  and there should be dt  here  of course, then that results in a number and we

of course define this as inner product

⟨n, v⟩ .

So this is now a number.  So let us say that you know you want to essentially find out
which waveform was sent by integrating  y(t)  with some waveform and finding a

number  and  that  metric  is  what  you  want  to  use.

  Unfortunately the noise also undergoes the same transformation and then gives you a
number.  Now you know that n (t)  has mean 0, so 

E [Z ]=0

but what about the  variance because essentially the noise variance is what affects your
ability to determine  what was sent.  If the noise variance is very high, there is a chance
that you will jump all over the  place.  If the noise variance is low, maybe you will just



get the correct message all the time.  So let us say that you have two waveforms v1 (t)
and  v2 (t)  which  are  finite  energy  signals.

  Finite energy just is another proxy for saying that they are integrable.  If n (t)  is a 0

mean white Gaussian noise signal whose power spectral density is  σ
2  is  N0/2 .

The power spectral density is σ
2  for all frequencies N0/2 .  Then 

⟨n,v1 ⟩=∫n(t )v1 (t)dt and ⟨n, v2 ⟩=∫n(t)v2(t)dt
are jointly  Gaussian with covariance of these two random variables is 

σ
2
⟨ v1 , v2 ⟩ .

This is a very powerful result because n (t)  is actually a complicated signal because

it  is  white.

  So its statistics are very difficult to quantify in the sense that n (t1)  and n (t2)  are

essentially uncorrelated.  They are independent if t1≠t2 .

So  if  you  filter  them  or  if  you  perform  any  multiplication  and  integration  with
waveforms,  what can you say about the resulting random variables?  It turns out that
there is a very nice characterization.  The covariance is just 

σ
2
⟨ v1 , v2 ⟩

which is a quantity  that is finite and you can always just determine it because v1 (t)v2 (t)  are integrable signals.  For the specific case of inner product 

⟨n, v⟩ with ⟨n, v⟩
in the sense if you look at the inner  product sorry if you find the covariance of ⟨n, v⟩
with itself that turns out to be the variance  of ⟨n, v⟩  and that can be shown to be 

σ
2
‖v‖2 .

  Of course remember 

‖v‖=∫v2
(t)dt .

How do you prove this?  So this is not very difficult to prove.  If you look at 



E [⟨n,v 1⟩⟨n, v2⟩] ,

then you write the expectation in terms  of integrals but just be careful in writing the
second integral  using a  different  letter   actually.   So  we write  n (t )v1(t)dt  andn (s)v2(s)ds .  This is a double integral and we will just write it as 

∫∫v1(t)v2(t) .

  Remember v1 (t)  v2 (t)  are known finite energy signals.  

E [n (t)n (s)]dtds .

Now 

E [n (t)n (s)]dtds .

So 

E [n (t)n (s)]dtds
remember we have n (t)  and n (s)  are independent  if t≠s  and only if t=s
then it is not.  So this means and you know that the power spectral density of n (t)  is

essentially  σ
2 .

  So the autocorrelation function is going to be  σ
2
δ(t−τ) .  So that is what we are

going to use.  So you can write 

E [n (t)n (s)]=σ
2
δ(t−s) .

So that is exactly what is being used over here.  This also is because it is wide sense
stationary you know that the autocorrelation depends  only on the lag or the difference
between  the  two  times.

  Now if we integrate with respect to ds , 

∫σ
2
∫ δ(t−s)dtds .

So 

∫δ(t−s)dtds .

Now I made another small change.  So because I wrote δ(t−s)  here this is non-zero

only when t=s .  So I silently just swap this t=s  over here because this particular



quantity  is  non-zero   only  when  t=s .

  Now if you now perform the 

∫δ(t−s)ds
that results in this particular  quantity going away and you have just 

σ
2
∫v1(t)v2(t)dt

because the integral  of the δ(t)  is essentially 1.  So you have 

σ
2
∫v1(t)v2(t)dt=σ

2
⟨v1 ,v2 ⟩ .

Now there is one important point.  If v1 (t)  and v2 (t)  are orthogonal signals that

is 

⟨v1 ,v2⟩=0

that leads to something  interesting that leads to the conclusion that this 

E [⟨n, v1⟩ ⟨n, v2⟩]=0

which means  that the resulting random variables are uncorrelated since they are jointly
Gaussian  and  uncorrelated   they  are  independent.   So  the  fact  that  we  have  jointly
Gaussian random variables all over the place is very  important because these neat results
essentially  come  together  only  because  of  the  fact  that   they  are  jointly  Gaussian.

  So  what  do  we have  in  the  signal  space  approach?   If  we look  at  the  geometric
interpretation of the projection of the white Gaussian noise  then the signal space spanned
by the  M  signals is finite  dimensional  with dimension  ≤M .   What does this
mean?  If you have the signals s0(t)  s1(t)  s2(t)  up to sM−1(t)  

the maximum dimension they can occupy is M   potentially lesser because let us say
that you are going to signal using just let us  say some s1(t)  and −s1(t) .  Let us

say that you are doing something like a binary signaling you send either s1  or −s1
or you send s1  or 0.  In this case M  is 2 but the dimension is only 1 because it is

the same signal flipped and  the signals are essentially linearly dependent.  The second
signal is a linear combination of the first signal for example or if you  are going to send
let  us  say  the  three  potential  signals  say  s1  or  s2  or  s1+s2  let  us   say.



  So in this case let us say  s1  and  s2  are orthogonal but definitely  s3  is not

orthogonal to s1   and s2  and in fact it is a linear combination.  So again there isM  is 3 and your dimension is 2.  So the signal space is always finite dimensional its
dimension is  ≤M .  The components of the white Gaussian noise orthogonal to the
signal space are independent  of the component in the signal space and thus irrelevant.
Now this is a very powerful statement and this is a statement we will spend a little  bit of
time  understanding.

  The thing is whenever you take the projection of the noise onto a particular signal that
is you perform 

∫n (t)v(t)dt
you get a number.  You perform 

∫n (t)v2(t)dt
you get a number let us say  v1 ,  v2 ,  v3  are all  orthogonal signals you get

multiple numbers.  Now what about that component of n (t)  which is not along these

signals that also has some  information but what is important is that these parts which
have these components  of  n (t)  that  are not  along the signal space in which the

modulating signals are present  are orthogonal and therefore they are irrelevant.  That is
they do not make any difference to your detection problem in finding out the  best guess
of which symbol was sent.  The other way to put this is the component of this noise along
the signal  space that   is  the component  of  n (t)  along your  v1 ,  v2 ,  v3

which are potentially along the signal  space are sufficient statistics they are enough to
make an optimal decision to determine which  s  was sent and this can be reduced to a
set  of  Gaussian  random  variables.

  So the key insight we are saying is this complicated n (t)  that affects your signal can

be reduced  to a set of numbers and these numbers are going to give you the answer of
how to decide  which M  was sent.  So rather than look at the complicated waveform
question we have reduced it to a number question  this makes things a lot simpler and you
know you can now be very happy that we are able  to make optimal decisions by looking
at a set of numbers by reducing the waveforms to  just these numbers.  To get an idea of
the signal space picture we will say let the signal space spanned by  s0(t) , s1(t)
up to sM−1(t)  let us say be script S. Now the orthonormal basis for this signal  space

can be represented as ψ1 , ψ2  up to ψn .  Now notice that over here I have said

ψn  so we have n≤M   because of the fact that the dimension is always less than or

equal  to  the  number  of   signals.



  You will have equality only when you do orthogonal signaling like FSK otherwise in
general it  is  n≤M .  The other thing is because these  ψ 's are orthonormal you
have these two properties  ⟨ψ1, ψ2 ⟩  is 0 and inner product ⟨ψ1, ψ1 ⟩  is 1.  This is

true for all  the signals  not necessarily  just  for  psi1 and psi2 but pair  wise they  are
orthogonal and their energy is 0.  Now all of these  ψ 's can be expressed as linear
combinations of these ψ 's that is  

ai1 ψ1 (t)+ai2ψ2(t)+...a¿ ψn(t) .  

So essentially what we are saying is that the  ψ 's are you can represent them as just
linear  combinations  of  the  orthonormal  basis  signals  and  these  ψ 's  are  directly
obtained  by just projecting the s  on to the respect sorry these aik 's are obtained by

projecting   the  ψ 's  on  to  the  respective  ψ 's.

  Now this is something which we have mentioned before but we want to do properly.
The  question  is  how do  we  find  ψk  from  si(t) ?   The  answer  if  you want  a

systematic  procedure  is  to  perform Gram-Schmidt  orthogonalization.   So  the  Gram-
Schmidt orthogonalization involves finding ϕk+1(t)  which is 

sk+1(t)–∑i=0

k
⟨sk+1 ,ψi⟩ ψi .  

So  fine  what  on  earth  does  this  mean?   What  we  are  doing  is  we  are  essentially
initializing 

ϕ1(t )=s0(t)/‖s0 (t)‖ .

  This gives us a ϕ1 .  In the next step actually this is let us say this is ψ1  rather this

is ψ1 .  This is initialization step and the next  step to find your basically now you have

a signal  which is orthogonal meaning let us not say orthogonal for a single signal.  It has
unit energy and it is essentially  s0(t)  scaled to make it unit energy.  Now the next

question is if we take  s1(t)  how do we now get that part of  s1(t)  that  is not

related to s0  or not related to ψ1 .  So how do we do that?  So we will now define a

ϕ2(t)  as  its  s2(t)  minus  remove  the  component  of  ψ1  in  s2 .

  So 

⟨s2,ψ1⟩ ψ1(t) .

So now I am going to claim that this  ϕ2  is orthogonal to  ψ1 .  How?  It is very

simple.  If you take 



⟨ψ1(t) ,ϕ2(t)⟩
you will get 

⟨ψ1(t), s2(t)⟩−⟨ψ1(t),s2 (t)⟩⟨ψ1(t),ψ1(t)⟩=0 .

So  these  two  are  essentially  going  to  be  cancelled  out.

  So this ϕ2(t)  is a signal that is orthogonal to ψ1  and if I now call 

ψ2 (t)=ϕ2(t)
‖ϕ2‖

I get my second basis element and this process can be iteratively  performed to obtain a
reasonable orthonormal basis from any  s0  to  sM−1 .   So if you give me any m

waveforms I can use the Gram-Schmidt method to find out an orthonormal  basis for this
signal space.  This is an important process because when you design your  s 's you
know you have to  be cognizant of what the receiver design is going to be and to make
sure that you are  going to properly be able to find out the size so that you can project the
noise, get  these numbers is an important process.  So we will actually spend some time
to do a reasonably big example to find out how this  process works and then I will also
tell you some methods by which you can actually directly  see the signal and also write
down your ψ1 , ψ2  without any effort.  Thank you.


