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  Welcome back to  this  lecture  on digital  communication  using GNU radio.   In  this
lecture, we are going to continue our discussion on demodulation, the preliminaries  and
talk a little more about jointly Gaussian random vectors and then we will briefly discuss
a little bit about hypothesis testing as well.  Let us now go back to where we left off in
the  last  lecture.   We  were  dealing  with  collections  of  random  vectors,  particularly
Gaussian random vectors  and we were saying that if you have a random vector  X ,
this consists of a column vector  consisting of X1 , X2 , up to Xn
which are random variables, which are jointly Gaussian.  One important aspect is that, I
have not provided the definition here, a jointly Gaussian random  vector has a special
definition.  It is one where any linear combination of the entries results in a Gaussian
random  variable.

  There is a very classic example of where a pair of random variables, both of them are
Gaussian but they are not jointly Gaussian.  So for example, let us say you have X is
for simplicity  N(0,1) .  So,  X is a Gaussian random variable which is normally

distributed.   Let  us  make  it  little  neater.

  So X is distributed as normal with mean zero variance 1.  

α

is independent of  X and is +1 or -1 with equal probability.  So it is like  α is one
where you toss a coin and if its heads is +1, the coin  is tails is -1 independent of X
and you write Y=αX .

Now, what does Y do?  Y  is essentially just a coin flip multiplied by a Gaussian.
So, since X  is normally distributed with mean zero and variance 1, you can actually



check   the  distribution  for  Y .

  If α  is 1, it is going to be the same as X  which means it is going to be Gaussian.
If  alpha is  -1,  it  is  actually  flipped version of  X but  you know  X  is  normally
distributed   with  mean  zero  and  variance  1.   −X is  also  going  to  be  normally
distributed with mean zero and variance 1.  So in both the cases, it is very evident thatY  is also Gaussian with mean zero and  variance 1.  But this is a very classic example
where  X and  Y are  both  individually  Gaussian  but  not   jointly  Gaussian.

  Why is that the case?  Because if you look at  X+Y ,  X+Y is not a Gaussian
random variable.  Why?  X+Y takes the value zero with probability 1/2 .  That is,
it takes the value zero with probability 1/2 .  That is because whenever 

α=−1 ,Y=−X .

So X+Y=0 .

  So with probability 1/2 , you are getting zero.  You are getting a weight on a single
number and as you know a continuous random variable  like a Gaussian cannot take any
single real number with any non-zero probability.  So this is a classic case where two
individual  random variables  are Gaussian but they are  not  jointly  Gaussian.   Jointly
Gaussian means if suppose you have X1 , X2 , up to Xn
and for any real numbers or complex  numbers 

α1 , α2 , αn ,

α1X1+α2X2+..+αn Xn
is  Gaussian with any distribution of course, then these are said to be jointly Gaussian
random  variables.   So  this  is  something  we  should  really  keep  in  mind.

  That is the only definition of a jointly Gaussian random variable and only such random
variables  have this kind of distribution that is 
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Now as we discussed at the end of the last lecture, independent and uncorrelated are  the
same  for  jointly  Gaussian  random  vectors.

  This is something which is also very key.  If you remember the example we discussed
where Y=αX ,Y is basically  +X  or  −X with equal probability, you can actually verify that
those two are uncorrelated.  But they are definitely not independent because if you know
the value of X , then you know  that with probability 1/2 Y  is definitely X
with  other  probability  1/2  Y  is  definitely   −X ,  they  are  definitely  not
independent.  But they are uncorrelated because if you evaluate 

E [XY ]

in that case, it will turn  out to be 0.  So in that sense, independent, equal to uncorrelated
only  holds  for  jointly  Gaussian  random  vectors.

  How?  So in the case of uncorrelated random variables, you have a Cx
which has only diagonal entries  and 0s here, 0s here.  Why?  Because what are the off
diagonal entries of the covariance matrix?  The off diagonal entries of the covariance
matrix are the correlations multiplied by  root variances of the individual variables, which
means if you say that those random variables  are uncorrelated, their covariance is 0,
which means your Cx  is now a diagonal matrix.  If your Cx  is a diagonal matrix,

you can easily verify Cx  inverse is also a diagonal matrix  and if you then look at this 

(x−m x)HCx−1
(x−mx) ,

of course  there is a hermitian here, you can easily verify that what will happen is that this
will essentially have a form, this will result in something of the form, maybe I will just
erase this, some constant times 

x1
2

or some constant times 

(x1−mx1)2



plus some constant times 

x2
2

or

(x2−mx2)2
and so on.  And these, so the way it will appear is that you will have 

e− ∼x12− ∼x2
2− ∼..

and this can actually split into 

e−x1
2

∼e−x22 ∼e−..

and so on.  Now you know that whenever you have a joint distribution which splits into
the marginals  and products, you can verify that that is going to be a, that means that from
all the  random variables in the joint distribution are independent because you can show
that  the uncorrelatedness which reflects in Cx will result in the PDFs being appearing

as   the  product  of  the  marginals.

  So  that  is  something  special  only  for  Gaussian,  maybe  there  may  be  some  other
variables for  Gaussian definitely uncorrelated implies independence and this is definitely
not the  case for most other random variables you can check.  Finally, of course joint
Gaussianness is preserved under affine transformations.  You can see that this is an affine
transformation over here, over here and that preserves the  joint Gaussianness that is if
you take a jointly Gaussian random vector, apply an affine transformation  to it, then the
resulting random variable is also going to be jointly Gaussian.  Now again these things
are  going  to  come  in  handy  whenever  you  deal  with  vectors  like   jointly  detecting
multiple symbols and so on.  So just keep these things in mind, we will refer back to
these  as  and  when  the  situation   arises.

  The next thing that we have to consider is Gaussian random processes.  Now one thing
you  must  remember  is  that  whenever  we  deal  with  these  practical  communication
systems  you  have  aspects  like  noise  and  you  know  channel  and  all  those  things.
Typically what happens is that the random process essentially is like a varying waveform
that is you have, there are two pictures of a random process that is one picture is, there  is
one particular random process, one particular realization, there is another realization  and
then  there  is  a  third  realization.   These  are  all  sample  path  wise  realizations.   For
example, let us say that you know this is like one particular path which you take,  another



particular  path  which  you  take,  another  particular  path  which  you  take.

  There are multiple paths, each of these can be chosen randomly.  This is the picture
when you want to basically fix the realization and view as a function  of time.  The other
picture is if you fix time, okay I will go back to the blue pen one second,  if you fix time
then it can be this red value, this blue value, this green value and so on.  That is x (t)
is  a  Gaussian random variable.   So there are  two pictures  in  the case of a Gaussian
random,  I  mean  any  random  process   or  a  Gaussian  random  process.

  If you want to look at it as a function of time, it is a realization.  If you fix t  and
want to look at it, then it becomes a random variable.  So typically this picture is you
know used.  We say x (t)
is  a  random  variable  for  every  t∈ℝ .  While  we  are  silent  about   the  exact
interpretation  of  t ,  you  can  assume  that  t  is  like  time.

  So for every time t  you have a random variable.  Now in the random process, what
is the significance of our understanding and why do we have to  look at these things?  See
whenever you deal with random processes, suppose that you make an observation now,
one question that we may ask is, is this observation useful for the next time instant?  For
example, if it is sunny today, then if it is likely to be sunny tomorrow as well,  you can
say that over time, you know the level of let's say the sun is definitely correlated  across
time.  That is something which you can say.  But suppose that you are in an environment
where you know today it may be sunny, tomorrow  all bets are off, it may be sunny,
cloudy, rainy or whatever, then you can say that for  this particular random process, there
is no real correlation among the weather on successive  days.  So you have these kinds of
characterizations  of  how  closely  related  the  random  variables   are.

  So  this  is  something  which  we will  try  to  exploit  even when designing  it  for  our
communication  system.  So for real numbers t1 , t2 , up to tn
and complex numbers a1 , a2 up to an ,

now just hold on  and we will tell you what 



t1 , t2 , up to tn
are.  Let us say that we observe the random process at time t1 , time t2  and timetn and then we  take a linear combination of those random variables you observed at

time t1 , time t2   and time tn  that is 

a1x (t1)+a2x (t2)+.. .

Then this is a Gaussian random variable.  This is the definition of a Gaussian random
process.

  I think you can recall that I just mentioned about jointly Gaussian random vector.  If you
take t1 , t2 , up to tn
and measure the random process at that time, x (t1) , x (t2) , x (tn)
forms  a random vector and I am claiming that it is a jointly Gaussian random vector
because  a1x (t1)+a2x (t2)+..
is Gaussian and therefore the Gaussian  random process is defined in this manner.  If you
basically take the random variables that constitute this random process for various  times
and take any linear combination, if that results in a Gaussian random variable  then this
process is said to be a Gaussian random process.  Now the Gaussian random process is
completely characterized by its mean and its autocorrelation  function.  Like if you recall
we mentioned that jointly Gaussian random vector, you just need to know  its mean, you
just  need  to  know  its  covariance  matrix.

  In a similar way, the covariance matrix is transformed to autocorrelation function.  So
the covariance matrix was useful in the random vector case because you had finite  set of
random vectors.   In  this  case,  the  autocorrelation  function  tells  you  the  relationship
between pairs of  random variables for every pairs of times.  Now one aspect is that you
have these aspects related to x (t1) and x (t2)
have some correlation.  What about 

x (t1+δ t) and x (t2+δ t) ,



do they have the same correlation  property?  That is if you look elsewhere, do they have
the  same  correlation  properties?   That  particular  aspect  is  called  stationarity.

  So if you recall a wide sense stationary process is one where the mean does not vary
with time and the autocorrelation depends only on the time gap.  That is if you want to
measure the correlation between x (t1) and x (t2) ,

let us say covariance,  it depends only on t2−t1 .

That is if this holds true, then you say that such a process is called a wide sense stationary
process.  So therefore, another way of looking at it is that the covariance function or the
autocorrelation  function, in this case we may write autocorrelation because we typically
say that it is 0 mean  or we subtract out the mean.  So autocorrelation, autocovariance, it
does  not  matter.

  So the autocorrelation process depends only on the gap  t2−t1 .  We can always

characterize the autocorrelation by calling this gap t2−t1 as τ  and  such a process

is called a wide sense stationary random process.  It is very typical to assume that random
processes are wide sense stationary when analyzing several  communication systems.  In
the Gaussian case, there is a special bonus.  Wide sense stationarity implies strict sense
stationarity because it is almost like once  you have characterized the covariance, it is like
you  know  the  distribution  like  in   the  case  of  random  vector  X is  known.

  In  a  similar  way,  the  Cx or  the  autocorrelation  which  is  basically  getting  the

covariance  for all pairwise random variables is fixed.  Therefore, the distribution itself
can be fully characterized.  This is something which you can look at from references.  But
most important is Gaussian random processes have a very nice characterization.  Any
linear combination of x (t1) , x (t2) , x (tn)
is  Gaussian.

  Now, now that we have our Gaussian random processes in our toolkit, let us look at n (t) .

We define n of t in this particular situation as the noise process.  It has zero mean and we
define its power spectral density N0/2  as σ

2 .  Now power spectral density, I am



sure you would have seen it in the context of you know  random processes, but if you
want  to  be  refreshed  about  the  definition,  the  power  spectral  density   is  the
autocorrelation  of  the,  sorry,  is  the  Fourier  transform of  the  autocorrelation.   As we
discussed, we are going to restrict our consideration to wide sense stationary  processes.

  So, if you take the autocorrelation which only depends on the lag t2−t1 and find  its

autocorrelation,  that  is  the  power  spectral  density.   So,  the  power  spectral  density
function is N0/2  which is same as σ

2  .  That is if you look at the power spectral

density, I will say Sn(f ) ,

the power spectral  density is flat and its value here is N0/2 .  Now as you very well

know, whenever you have a random variable which is flat like this,  then let me just fix
this  a  little  bit.

  So, this is  Sn(f ) .  Whenever you have a random variable with a flat or rather not

random, whenever you have  a Fourier transform that is flat, this is N0/2 , you know

that its corresponding  time domain function is δ(t) .  You know, basically I am using

the fact that δ(t) has Fourier transform 1.  So, since N0/2 is the Fourier transform,

we have 

Rn (τ) .

This  is  the autocorrelation  or autocovariance  of the noise function is  N0/2  times

δ(τ ) .  We can also write it as 

σ
2
δ( τ) .

  Now one question which you may ask is why this choice  N0/2 ?  This  N0/2

choice  is  made  for  various  reasons.   Of  course,  you  can  go  back  and  look  at  the
Boltzmann  constant  based  derivation  and  so   on.   But  more  importantly,  we  wantN0/2  because  we will  eventually  move to  complex  baseband  signaling.   In  the

context of complex baseband signaling, if we choose N0/2 as the noise along the  real

axis and N0/2 as the noise along the imaginary axis and treat those as independent,

then  we  will  eventually  get  N0  as  the  complex  noise.

  So, that is where we are getting at.  For now, we are just going to define the noise along
this particular real axis as N0/2 .  N0/2  is the real noise process with zero mean

and power spectral density N0/2 .  So, that is n (t) .  So, 



N0=k T0 ,

k  is  the  Boltzmann  constant  and  T0  is  the  operating  temperature.

  You can choose it as 300 Kelvin or something.  It has to be in Kelvin, remember and the
Boltzmann constant is as defined in your list of physical  constants.  Now, there is a
problem with this definition of noise.  That is, it is like noise is flat and has a very wide
spectrum and this particular noise  is actually, this is the frequency axis because of the
Fourier transform.  So, across all frequencies it keeps going.  This means that your noise
essentially  has  an  infinite  amount  of  energy  in  it.

  But that does not make sense because you can actually start extracting the energy from
the noise and build something called a perpetual motion machine, which is something
you may  have heard about in physics.  You can actually try to get free energy from the
noise.  So, the answer to, you know, if you have a question as to whether that is possible,
the answer is no.  This is a noise model and what happens is that the noise essentially
affects the frequency  range within which you employ the communication system because
wherever you send the signal  that is where the noise is.  So, to that extent within the
band of interest,  within the frequency range of  interest,  the  noise exists  and can be
treated  as  flat.

  That is basically the assumption we are making.  So, let us not get into pathological
questions of whether the noise actually has infinite  energy, infinite power.  No.  We will
just assume that if this is the range of bandwidths you are using, remember your  pass
band signaling and all  those,  so the noise here,  this  is  the amount  that  affects   your
signaling.  So, that is the summary.  Now we will take a very brief look at hypothesis
testing.

  So, hypothesis testing can be looked at as a framework for deciding which of  M
possible  hypotheses best explains an observation  Y .  This is based on a statistical
model.  So, we assume that, let us say that there is an observation  Y , but there is
something  called  i  that  actually  causes  this.   If  you want  to have a very simple
example, let us say that you send a message i .  So, this can be 1, 2, 3, 4, you just send
a  message  i  and  you  receive  Y .

  The question is from Y , how do we decide which message was sent?  So, that is why
we have these hypotheses.  Hypothesis Hi  said message i  is sent.  Now we have to

decide how these hypotheses are tested and how we decide which of these  hypotheses is
likely  to be true.   That  is  we have  H1 ,  H2  up to  HM ,  let  us say we send

messages  from 1  to  M ,  which  of   these  messages  are  sent  is  the  question.   So,



probability  of  Hi  are  the  Bayesian  priors  that  are  known.

  That is in this particular case, the simple way to understand is probability of Hi  is

the probability that message i  is sent.  For example, if you live in a city where let us
say  most  of  the  days  it  is  sunny and every   day you send a  message  regarding the
weather, then the probability that  Hi , let us say  that probability that you send the

message that  it  is sunny is  much more likely than  the probability  that you send the
message that  it  is  rainy or snowy or cold or something  like that.   So,  in  that  sense
P[Hi]  are the Bayesian priors.  But in the case of messages when you send in digital

communication, let us say 0s and  1s.  Typically, these 0s and 1s or 1, 2, 3, 4 all those are
equally likely and given that they  are equally likely,  these  P[Hi] are going to be

1M ,  which  means  all  of  them  have   the  same  prior  probability.

  So, this is something again that you have to keep in mind.  A Bayesian prior indicates
what the probability that that particular event of that particular  message being sent is.  If
all messages are equally likely, then that does not help you make a decision.  Intuitively,
if you have a situation where it is more sunny most of the times, then you  may say even
if  I get a rainy answer, I have to be really  convinced that  it  is actually   really rainy
because most of the times he sends a sunny message.  What if suddenly he or she sends a
rainy message?  These kinds of questions are what this essentially is meant to handle.

  So, let us go to the hypothesis testing case with a very simple example.  Before we go
into that particular example, I will give you another simple test.  Let us say that you have
a car windshield and let us say that you count the number of  drops and let us say that the
number of drops is what you measure.  Let us say it is something like 10,000, 100,000, 5
or something like that.  So, your y is the number of drops on the car windshield and you
have  to  decide  whether   it  is  raining  or  it  is  not  raining.

  For a minute, let us assume that you are only counting the drops and not checking the
clouds.  So, the question which we may ask is, there are two hypotheses.  It is raining, it
is not raining.  Then based on the observation which is the number of drops which we call
y, how will  you conclude whether it is raining or not?  In other words, we have to come
up with a way.  For example, we can make a statement like if the number of drops is
greater  than  1,25,000,   then  it  is  raining.

  If it is less than or equal to 1,25,000, it is not raining.  Someone actually just sprayed
those to clean the windshield or something like that.  In this manner, we have to come up
with a means or a metric to break our tie or to find  out which hypothesis we are going to
decide on.  Hypothesis testing can have errors.  It could be that you are under a tree, so



you do not get enough number of drops, yet  it is raining.  So, this can lead to an error or
someone  essentially  came  with  a  bucket  and  poured  all  the  water.

  You counted the number of drops.  There are many, many drops.  So, you have greater
than 1,25,000, but it is not raining.  So, you made an error.  So, under various situations,
errors are possible.  Your aim is to take into account all of these situations and minimize
the error.  So, this is like a very basic kind of example to motivate this hypothesis testing,
but in  a more practical scenario, let us restrict our consideration to the Gaussian case.

  Let us say that you have a very basic Gaussian system.  There are two symbols 0 or 1,
but what you see is  Y  and  Y  manifests  as, if 0 is sent,   Y  manifests  as a
Gaussian with mean 0 and variance σ

2 .  If 1 is sent, I am sorry, this should be 1, if 1
is sent, Y  manifests as a Gaussian with  mean m  and variance σ

2 .  That is, if
you send 0, then you get a Y  which looks like this.  This is essentially the distribution.
Of course, it should not go below 0, sorry, please don't, you know, let me just redo this.

  So, if you send, you get this.  If you send 1, you get this, where this is m .  So this is
what is happening.  So, if you, now let us look at this intuitively.  Intuitively, it is very
evident that if you send, if you receive some value which is here,  then most likely what
was sent, you know, it is like most likely that message 1 was  sent and this Gaussian took
it far to the right.  It is more likely that a value close to m  is taken far to the right than
a  value  close   to  0.

  But suppose that you get something which is, you know, over here, let us say, over here,
then it is more likely that a 0 was carried to this place rather than m , assuming m
is  a positive number.  So, what is the decision rule?  Now, we have to decide, just like
my windshield example, we have to decide where we can draw  a line and to the left of
that line we will say message 0 was sent, to the right of that  line we will say message 1
was sent.  An intuitive rule is, this is 0, this is m .  Of course, by symmetry, because
the variance is the same, we can decide that m /2  is  one place where, you know, we
can draw the line and to the left we will decide that H0   was sent, to the right we will

decide  H1  was  sent.

  This looks like a possible way to make this decision.  But so, I mean, when we decide
this decision rule, we want to partition the observation  space.  We want to basically say
anything here is H0 , anything here is H1  and that kind of thing  is what you want

to say.  But what is the correct statement or what is the mathematically correct statement
which  optimizes something is something that we are yet to see.  So, let us briefly look at
the conditional error probabilities.  Errors can happen in hypothesis testing, that is, even
though you know, you know, you, what  message 1 was sent, it could be that the message



was  carried  to  the  left  side  because  of  the   noise.

  So, in this particular case, you know, instead of  m  you got something over here
because of  the behavior of the Gaussian.  So, you can have this kind of errors.  So, what
is the probability that H j  is decided?  You conclude that H j  is decided for somej  not equal to i , but Hi  is true.  That is, what is the probability that you will

decide this message 1 was sent even though  message 0 was actually sent?  What is the
probability that you decide that message 0 was sent even though actually message  1 was
sent?  So, that is basically the 

∑P[ Y∈Γ j∣ j≠i] ,

that is, let us say that you have multiple symbols, you decide one of the wrong symbols
given that hi was sent, okay, and now this is same as 

1−P[Y∈Γ i∣Hi] ,

that is,  this is basically the same as 1 minus the probability that y belongs to the correct
region.

  This  is  a conditional,  you know, error  probability  just  so you know.  With  priors,
actually there is a little bit, it gets a little more tricky.  With priors what happens is that
you have to account for the prior, that is, what is  the probability that, you know, messagei  is sent, what is the probability that message  j  is sent, this is the case where, you
know, all messages are not equally likely.  Right now we will just skip this for a minute.
We will focus on this particular aspect.  So, if we look at conditional error probabilities
and  maximum  likelihood,  that  is  what  we  call   as  ML,  maximum  likelihood.

  The maximum likelihood essentially maximizes the, some likelihood function, that is, it
tries to give you something which has the most probable way of deciding.  Let us look at
our example.  What is the probability of error given 0 is sent?  If you look back at our
plot, once you send 0, you will make an error if you cross into  m /2  or to the right.
Similarly, if you send 1, you will make an error if you cross from m /2  to the, if  you
cross m /2  to the left.  So now, coming back to that, what is the probability that you
will  make  an  error?   Let  us  look  at  this  particular  case.

  So, you will make an error if this particular Gaussian crosses m /2 , that is, this is  

∫m /2

∞ 1
σ √2π

e−x2/2 σ2dx .



Now,  again  if  you  just  do  some  quick  normalizations  and  you  know,  do  the
transformation to z  and  stuff, you can easily find out that this is Q(m /2σ) .

Similarly, if you do the same analysis for error given 1, you will make an error if what
you observe is to the left of m /2  even though 1 was sent and that you can also verify,
it will turn out to be Q(m /2σ) .

This is because why is 

N(0 ,σ2
)

under hypothesis H0 , why is 

N(m,σ2
)

under  hypothesis H1 ?  So, it is very evident that for both of these, you can essentially

evaluate  these  probabilities.

  It turns out that both of these are the same.  Now, that means that since, you know,
probability of sending 0 and probability of sending 1  for both equiprobable Q(m /2σ)

is indeed the probability of making an error.  So, the maximum likelihood decision rule
actually is going to say that I want you to find me  

argmax i∈0,1,...M−1p(y∣i )=argmaxi∈0,1,...M−1 logp(y∣i) .

So, that is you write the pdf 

p(y∣i)
and find out that particular i  which is  the maximum.  In the case of Gaussian, this is
just  going  to  turn  out  to  be  the  minimum  distance.

  That is something which we will see.  The other is the minimum probability of error rule
which is the one with Bayesian priors.  So now, if you want to minimize the probability
of error, then this delta minimum probability  of error 

δMPE(y ) = argmax i∈0,1,...M−1π(i )p(y∣i ) .



The  only  difference  is  we  do  π (i)  times  p(y∣i)  which  includes  the  prior

probability.  That is in this case, let us say that there is a probability that you will send 1
more   often  than  0,  you  can  account  for  that  in  the  form  of  π (0) .

  That is what essentially this is.  Other than that the rule is similar.  If all the π (i) 's

are the same, let us say in our case it is half and half, then this  particular thing can be
removed because for all of these func p(y∣i) , the same multiplier  exists.  So, you can

get rid of this.  So, maximum likelihood is the same of minimum probability of error also
known as MAP, maximum  a posteriori under the condition of equal priors that is when
all symbols are equally  likely.  Now, the minimum probability of error is also the same
as the maximum a posteriori  rule   which is  the MAP rule  because it  maximizes  the
probability  that  Hi  occurs  given  that   y  is  observed.

  So, that is something which you can verify.  The final thing which we want to just
briefly dwell upon is the aspect of irrelevant statistics.  Sometimes when we have Y
and it is complicated, you know it is a complicated thing to process  because it has been
much of unnecessary or extraneous information.  The question which we have is can we
decompose the statistic into Y1 ,  Y2  where only Y1  is  relevant and Y2  is

not  relevant.   Let  us  take  a  simple  example.

  Let us say that our symbols are like a PAM system, everything is real.  But let us say
that the noise is going to take it to some place like this.  There is complex noise.  So,
there is real noise and imaginary noise.  So, can we not decompose Y  into two parts?
So, in my example we will just take the real part and imaginary part.  The imaginary part
of noise is irrelevant because it does not affect your decision on  what is actually sent on
the  real  axis.

  In a technically speaking for M -merry hypothesis testing where you want to check
which one  of  M  hypotheses were sent, if you decompose your  Y  into  Y1 ,Y2 ,  you can decompose it in  various ways like break into a vector or you know

subtract or add or something like that.  If you find some part that is irrelevant to the
conditional distribution of Y2  given  Y1 , then Hi  is independent of i .  That

is if it is not going to aid you in deciding which hypothesis is sent, then 

p(y2∣y1 , i)=p(y2∣y1)

for all i .  That is intuitively speaking if you have some extraneous information that is
not relevant,  then you can ignore it.  We will look at this more technically when we deal
with projecting noise onto the signal  space and we will show that that part that is not
projected  is  irrelevant.



  That is something which we will see in the next few lectures.  So, to summarize what
we have learnt over the past few lectures, practical communication  systems have some
kind of random effects such as noise and these necessitate optimal detection  techniques.
Inference, inferences from meaning concluding what was sent from the received signals
may  be complicated and it may be easier to take them to a different space or convert
them.  In this situation, we will use the relevant space with sufficient statistics and that  is
something  we  will  see.   Hypothesis  testing  to  obtain  the  maximum  likelihood  or
minimum error decision on transmitted symbols  is something that is a tool that we will
use  in  order  to  recover  our  data  and  also   find  out  how much  error  there  is  while
recovering the data.  These are some aspects that we will see in the next lecture followed
by implementation  of these on GNU radio as well.  Thank you.  Thank you.


