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  Hello. So, welcome to this lecture on Digital Communication Using GNU Radio. My
name is  Kumar Appiah and I belong to the Department of Electrical Engineering at IIT
Bombay. In  this lecture, we are going to look at demodulation and cover some of the
preliminaries  and  gain   some  of  the  tools  that  will  be  useful  when  we  perform
demodulation,  that  is  to  get  back   your  symbols  from  the  waveforms.   So  as  an
introduction, you can recall that modulation is the conversion of messages into  signal
waveforms. So, as you are aware, in the case of digital communication, our aim  is to
communicate  a  finite  set  of  messages  and  these  messages  have  to  be  converted  to
waveforms and these waveforms as  you have  seen are designed with bandwidth  and
power   constraints.

  The reverse operation is demodulation, wherein from the waveforms you want to infer
or conclude  as to which message or messages were sent.  So,  the task of recovering
messages from received  signals is demodulation. Here, the tricky part is that since we
have waveforms and these  waveforms can be very complicated and they can actually
undergo variations. As an example,  in the case of let us say amplitude modulation, let us
say that you send one of one, two,  three or four levels,  but these levels are actually
translated  to  some  waveforms.

 So,  for example, you can have this is one level, this is another level, this is another level.
Now, because of noise, actually what happens is that these things get little bit affected
and they do not resemble the original waveform. So, the question is when your waveform
undergoes   modification  under  channel  noise  or  other  distortions,  what  do  we  do?
Remember that  this is a very practical and typical effect that you have to handle as a
communication  engineer because the environment in which you are going to send your
waveforms is  definitely   going  to  cause  some modifications.  The  other  thing  is  that
whenever you receive your signal  at your receiver or your cell phone or your laptop or
wherever it is, it is definitely  going to be affected by noise.  So, the challenge which we



are going to consider in this lecture are to find out what are the  optimal methods to
recover  messages  with  minimum  errors.

 So, we are silently introducing the  aspect of error also, that is, it could so happen that
you  send  a  particular  symbol,   but  because  of  the  variations  caused  during  the
transmission or during reception, it could  be misinterpreted as some other symbol. See,
after all you are sending a waveform, you  are receiving a waveform, what if the received
waveform is so far apart or so different that  you actually conclude that it is a different
waveform, you will end up making an error.  Minimizing these errors and ensuring that
you get a reliable communication is part of  what we call the detection problem. The
detection as opposed to estimation refers to the fact  that we want to conclude which one
of the finite messages you have sent.  The ingredients that our toolkit for demodulation
has are basically random processes because  largely we are going to consider noise here
and noise is a random process and it has certain  spectral properties that will come in
handy.

 The  other  is  hypothesis  testing,  wherein  you  have  to  find  out  which  one  of  these
particular hypothesis is most likely given the observation,  which is actually another form
of or another presentation of the detection problem.  Now, let us revise some basics of the
Gaussian random variable. Before we actually get to why  I am jumping straight into the
Gaussian  random variable,  the  reason is  because  Gaussian  random  variables  appear
naturally as noise sources and some channel modification effects as well,  which we will
cover later, primarily due to the central limit theorem. Now, if you may recall,  the central
limit theorem essentially says that if you have several iid random variables like 

X1 , X2 , X3

and so on. So, if you add these random variables, then the resulting random variable  is
actually Gaussian irrespective of the prior distribution that your 

X1 , X2 , X3

had.

  For example, you can take 

X1 , X2 , X3

as uniform and add 10 independent and identically distributed  uniform random variables
and if you actually  plot the histogram, surprise,  surprise,  you will  get a  bell  shaped
curve. So, whenever you have variables which appear as a combination of or as a sum of
several independent identically distributed random variables, it is more or less accurate



to consider them to be Gaussian and this is confirmed by experimental observations also.
Now, since we are going to consider noise significantly in this particular lecture,  let us
also  have  an  idea  as  to  why this  thermal  noise  or  circuit  noise is  actually  generally
treated as Gaussian. So, if you look at something like a wire or whatever medium that
you are going  to consider for sending your signal, typically if it is something like a wire
where you are sending  signals as voltages and currents, the carriers are electrons. So, you
have these little electrons,  but these electrons are going to be thermally agitated that is
because of the effect of the  heat and you know the effect of heat on these electrons, there
is  a  random  process  which  happens.

  Some electrons are going to essentially jump or you know go faster or slower and get
missing and  things like that. That is they essentially superpose some variations onto the
current  or the voltage that you are going to observe at the receiver. So, since these little
tiny  variations are all treated as independent, it is a reasonable assumption and they all
superpose,  that is they add up and because of that you can assume that the thermal noise
at the circuit level  is typically Gaussian. And this is also borne out by experiments that is
a simple thing you can do  is connect a wire just from ground to the oscilloscope in your
lab and we then just   make the oscilloscope go to  the most  you know like the least
possible vertical resolution and  take those samples and then transfer it to your PC and
histogram it, you will get a bell-shaped  curve. So, circuit noise is typically Gaussian.

 Now, the PDF of a Gaussian random variable with  

mean μ and variance σ
2

that is this is the 

mean μ and variance σ
2 .

So,   this  is  something you have to be careful  about.  The variance is  σ
2 ,  standard

deviation  σ the mean is μ . This is the PDF, it is 

1
σ√2π

e
(−(x−μ)

2

2σ 2 )

by the way here x is a real number. So, the notation which  we typically use is 

N (μ ,σ2)

indicating  that  we have  a  Gaussian  random variable  that  is   this  random variable  is
distributed in a normally distributed that is why we use N or Gaussian,  mean is  μ ,

variance  is  σ
2 .



 Now, of course, the PDF you would have seen is  bell-shaped. The median sorry for a
Gaussian it is interesting that the median which is where the  50 percent distribution lies
is mu. The mean is also mu. The mode if you do not recall what a  mode is the mode is
where the probability density function essentially has a peak.  This is called a unimodular
distribution  because  it  has  a  single  peak  and  this  peak  is  at  μ .

 So,  the median, mode, mean all for a Gaussian are  μ . The other thing is that the
variance the  

σ
2

controls how fat your Gaussian is that is how much variability there is. If the  Gaussian is
narrow then many if you start generating samples of this Gaussian that is  if the variance
is small you start generating many samples of this Gaussian they will be very  close to 

μ .

But if your 

σ

is large that is your variance is large then you will have  variables all over the you will
have the random variable realizations all over the place and a  wide variance signifies that
there is a wide variation you can see. So, it is very typical  to assume you know to say
that you know people typically say that most of the Gaussian is  concentrated within 

μ±3σ .

 If you calculate the probabilities that will be  close to 99 percent and so on and you can
just do those some people say 

5σ , 6σ

and so on.  But mostly it is concentrated within let us say a 6σ or you know width of
interval  with centered around μ . So, that is how a Gaussian looks like. Some other
basics of  course the sum of these are true for random variables with any distribution.
Affine  transformations  naturally  preserve  Gaussians  this  is  not  true  for  all  random
variables  of  course  but  still  for  Gaussians  it  is  true.

 If X is distributed as Gaussian  with mean μ  and variance σ
2  

Y=aX+b



then Y is distributed with  mean with Gaussian with mean 

aμ+b

with variance 

a2σ2 .

Now this is not  difficult to see because if you look at 

E(Y )=E(aX+b)=aμ+b .

Now similarly for variance if you look at the 

var (Y )=var (aX+b )

and I hope you recall that any addition of any constant does not affect  the variance. So,
this is 

var(aX )

and multiplication by a constant essentially results  in the variance getting squared and
this results in 

a2 var(X )=a2σ2 .

So,  be  aware  that  you  must  be  able  to  quickly  do  these  transformations.

 The reason is  because often when we analyze problems related to detection you may
want to scale you know if  you have 

Y=X+noise

or something you may say oh let me multiply everything by 10  so that becomes easier.
So,  then  you  have  to  make  sure  that  all  the  distributions  are  scaled   accordingly
sometimes you may subtract some value so then you have to adjust the mean. So, make
sure  that these affine transformations and these computations are very clear. Another
thing is  this conversion to standard form. So, this N(0,1) is called the standard normal
distribution or standard  Gaussian distribution that is it is a Gaussian random variable
with  mean  0  and  unit  variance   that  is  the  variance  of  this  random  variable  is  1.

 Now, the key idea is that any Gaussian random  variable there is an affine transformation
that will convert this to standard normal. What is it?  It is essentially 

X−μ
σ .



So, why does this work? So, you have the result on top.  This is actually like if you want
to say use this 

Y=aX+b

you essentially have 

a=1/σ and b=−μ/σ

that is what you have because it is 

X−μ
σ .

So, that is 

a=1/σ and b=−μ/σ .

 So, it is very evident that 

aμ+b .

So, 

aμ+b=μ/σ−μ/σ=0

Similarly,  let us also look at the variance. Let me erase this. So, if you have 

a=1/σ and b=−μ/σ .

 Now, if you want to calculate the variance like I mentioned earlier this b does  not play
any role in the variance. So, we can essentially ignore this 

a=1/σ

and if  you just say 

a2σ2=σ
2
/σ

2
=1 .

Now, this particular conversion to standard form used to be quite popular in the olden
times when we did not have means of computing the Gaussians in a very easy way. So,
what would  happen is that there would be essentially a booklet or table with lots of these
Gaussian   probabilities  encoded  in  them  and  you  would  essentially  have  those
probabilities encoded  only for N(0,1). So, suppose you had a mean of 10 and a variance
of 25 you would then convert that  whatever Gaussian probability you wanted to find out



for a standard normal by transforming those  variables and then just looking it up on the
table.

 So, this used to be popular in the olden  times of course today computers can essentially
calculate  these things very very easily.   Another important  aspect that we need to be
comfortable  with  is  the  CCDF  that  is  the   complementary  cumulative  distribution
function of the Gaussian which we also for convenience  call the so called Q function.
This Q function appears very frequently in the context of digital  communication because
calculation of symbol errors and bit errors often involve computations  over Gaussian of
the form this that is probability that your value is larger than you know. So,  as we will
see shortly or may be in the next lecture or so you typically have to demarket  your
received symbols into decision regions or decision intervals. So, an error happens if  your
received  value  falls  outside  an  interval.

 Outside an interval is something like saying  

Z>X

that is just you are integrating and in this case I am  using the standard normal. Standard
normal is often used because you can always normalize all  your computations to make it
have the noise to be something like N(0,1) that is something you will see  shortly. So, 

P(Z>x )=∫
x

∞ e−t
2
/2

√2π
dt .

this is the complementary cumulative distribution function  for a unit variance 0 mean
Gaussian random variable is 

∫
x

∞ e−t
2
/2

√2π
dt .

Naturally you can see that this is the same as the Gaussian  PDF except that you have
substituted 

μ=0 and σ=1

and this for a standard normal is the  Q function. Remember one thing the Q is always
defined only for a standard normal distribution  not for anything which has non-zero
mean  or  a  variance  other  than  1.

 Now even this Q computation  actually is you can see is a you know it is an integral. So,
you will  have  to  compute  it   numerically  or  you know do a  look up a  table  like  I
mentioned. In fact if you are interested in  looking at the function in MATLAB, Octave



and you know Python and all those you can look for this  ERFC function. ERFC is not a
precise function in the same function because ERFC I think does not  have some scalings
like you know the 2 and 2π  you so you will have to do some very minor mapping  but
the  ERFC  does  this  computation.  So,  this  has  been  implemented  for  you  in  many
computational   software  so  you can  use  those  each  software  has  a  different  way of
implementing it some of them do  a computation some of them do a table lookup and
interpolate  between  values  and  so  on.

  But  if  you  really  want  to  just  do  a  quick  back  of  the  envelope  calculation  and
approximation you can  get some reasonably tight  bounds for larger  x .  So,  these
bounds are very very useful because you  know some sometimes when you are as a
designer you want to just get rules of thumb and you want to  you know just get quick
values  you  can  use  some  approximations  to  estimate  this  Q  very  very  easily.   For
example 

(1−
1x2 )

e−x2

2x √2 π

and is one of the  you know like Q(x)

is always larger than this and Q(x)

is always smaller than 

e−x2

2x√2π
.

You can see that these two are the same and this just slides slightly  lower so you can see
that when x  starts becoming values like 3, 4, 5 and so on then this becomes  a very
very  tight  range  of  values  within  which  you  can  sandwich  Q.  So,  Q  is  essentially
approximated   by  using  these.

 Now it is worthwhile to see how these can be done you do not need anything more  than
elementary calculus to do these kinds of computations. So, for example I will show you
how you can get one of these bounds. So, you start with Q(x)



that  is  the  definition  is  that  it  is   remember  it  is  the  complementary  cumulative
distribution function for a standard normal.  So, a standard normal is 

e−x2

2

√2π

I will write t  because I am  integrating from x  so I will write 

∫x
∞ e−t2

2

√2 π
dt

that  is  to  visualize  it  is  this  part.

 Oh I should not run there I am so sorry Gaussian  cannot go to 0 this is standard normal
yeah it is this part that part always have that picture  in mind it is the part to the right ofx of course you can draw  x  to the left also I mean I agree  but in general you
always take x  to be a large positive value so it is the right of x . So,  this integral
you play a trick you multiply and divide by t  you multiply and divide by t  should
not be a problem because you know even if you say oh what happens if my integrating
you know  my integration limits have this 0 within it no problem still 0 by 0 does not
cause any problem  because there the limit is 1 so it does not matter. Now if you play this
trick you can just write this  as 

∫x
∞ d(−et2

2 )t√2π

and you must remember integration by parts  that is 

∫udv=uv−∫vdu .

So, 

uv=
−e−t2

2t√2π

you write x  and ∞  over here that is you substitute those values  

−vdu
in this case v  is you know like this you write it as 



e−t2

2t2
√2π

.

The reason is because you have this  1/t and this  t  that is why you get  1/t2

you  can  check  this  out.

 Now if you substitute over here in the case of ∞  there is no  problem it is 0 in the
case of x  it will be 

e−x2

2x√2π

which  gives you this part 

−∫x
∞ e−t2

2t2
√2π

dt .

Now you can clearly see that 

e−t2

2t2
√2π

is a non-negative  function therefore for any value of  x this integral will be a positive
number since you  are subtracting a positive number you can bound this by writing 

⩽e−x2

2 .

So, this gives you the left hand side bound over here for the right hand side  sorry this
gives you the right hand side bound rather yes this is the right hand side bound for  the
left hand side bound it is not very difficult all you need to do is you need to just continue
over here you multiply again by t over here and t  over here and if you perform this
integral you  will get something and you will get something plus. So, you can actually
write the greater  than or equal to sign and you will get that 1/x2 very beautifully. So,
you once if you keep  going by parts again and again you start getting tighter and tighter
bounds of course typically  we just restrict ourselves to these two bounds that is the most
useful of course emphasizing  that these are useful when you want to do and calculations
you know but with a calculator but  typically nowadays computers can evaluate these
very  very  efficiently.

  The next thing that we have to focus on are collections of Gaussian random variables.
So,  often in digital communication we have to deal with collections of random variables



for example  suppose that you are getting multiple symbols at once and for some reason
you know there is  some relationship between these or some noise related correlations are
there and all those  kinds of things can happen. So, we do not deal with Gaussian random
variables  or  random variables   in  isolation  we  also  deal  with  collections  of  random
variables in the most general form  whenever you have a collection of random variables
we group them into a vector a column vector  typically and call such a vector a random
vector. Typically of course there is no need for X1 , X2

to  have the same distribution but typically it is convenient for you to group together
random  variables that have the same distribution not just same mean same variance but
the same  distribution of course there may be correlations and there may be of course
there  may  be  minor   variations  for  example  X1  may  be  Gaussian  with  mean  1

variance 2 X2  may be Gaussian with mean 1  variance 3 X3  may be Gaussian with

mean 10 variance 50 and so on those variations can be there but  typically we group
together  Gaussians  in  a  Gaussian  random  vector.  One  important  definition   or  a
characterizing  aspect  of  random  variables  is  a  so  called  covariance  matrix.

 This covariance  matrix 

Cx=E[(X−E[X ])(X−E[X ])
H
]  .

So, almost like you want to take the outer product. So, X  is a column vector

XH
is an row vector this is the outer product. Now this covariance matrix is a very  important
quantity that tells you a lot about the joint relationship between the entries in  the random
vector X
that is Cx
is actually an n×n matrix whose ij th entry is the  covariance between X i and X j  

and the diagonal entries the ii th entries are the variance of  the corresponding X i 's.

So, what does this mean? So, effectively if you look at the off diagonal  entries of Cx
these are the variances and this particular entry is the covariance between 



X i and X j  

that is the 

E [(X i−μi)(X j−μ j)] .

 So, this  is the covariance.   Covariance of course you would have seen in your past
courses,  but  to  give  you  an  intuition   covariance  measures  both  the  variance  of  the
individual random variables as well as their  correlation. So, how does that work? So, if
you look at the next one there is a Cauchy-Schwarz  inequality that says the entries of this
covariance matrix have to satisfy 

|Cx [i , j]|≤√Cx [i ,i ]Cx [ j , j] .

This is something which Cauchy-Schwarz inequality  says there are many ways to prove
this, but more importantly if you look at 

|Cx [ i , j]|
√Cx [ i , i ]Cx [ j , j]

that  will  be the correlation coefficient  it  will  be a number between -1  and 1 if  you
remember the mod will be a number between -1 and 1 and that gives you the  correlation
coefficient between X i and X j  .

Now this is important because obtaining correlations  tells us that how much we know
about one particular random variable if we know information  about the other. Now in a
very  similar  fashion  this  particular  Cauchy-Schwarz  inequality  also   places  some
constraints  on  the  kinds  of  entries  that  can  go  here.

 You can't fill in arbitrary  entries and just hope that this becomes a covariance matrix. In
other words this particular  covariance matrix must satisfy the fact that if you fix the
diagonals the off diagonal entries  must satisfy this particular condition. So in fact there
are some other properties these  covariance matrices are by definition you know if for
real random vectors they are symmetric  matrices for complex random variables they are
Hermitian symmetric. You can just put a 

CxH
over here and you will find that if you just use the relationship 

(A B)
H
=BH AH



you get the same Cx
back. So there are many many properties of these  we will explore all those as and when
we get to them but for now a covariance matrix characterizes  both the variance of the
random  variables  in  the  random  vector  and  it  also  characterizes  the   correlation
coefficient.

 The correlation coefficient is something which is very useful in deciding how  the X i s and X j s

are related. So let's look at collections of random vectors. So when we look  at X  in
this collection of Gaussian random vectors let's say X  is distributed as normal and we
use  the notation X∼N(m x ,Cx)
where m x
now is a column vector Cx
is a matrix. So let's say X  has n entries,  m x  has n entries, Cx  is an n×n
symmetric or Hermitian matrix. Now once again if we perform an  affine transformation
let's say Y=AX+b
then Y
is just going to be distributed  again as Gaussian with mean Amx+b
and covariance 

ACx AH .



  So I think it is evident at least the mean part should be evident you can just put an
expectation  over here and you get A E[X ]+b=Amx+b .

The covariance  also be very evident but if you really want to just do it if you write 

E [(Y−E [Y ])(Y−E[Y ])
H
]

then if you just substitute for Y=AX+b
then over here Amx+b
comes  in. So what you will get is you will get 

E [A (X−mx)(X−mx )H A H
]

and if you bring the expectation inside you will get 

ACx AH .

This is  something which you can verify it  should not be too difficult.  So this is the
corresponding  affine   relationship  for  the  case  of  Gaussian  random  variables.

 For the case of the Gaussian random  vectors like this is the analogous relationship that
you found in the random variables case for  the random vectors. So let us before ending
let us look at some special aspects of Gaussian random  variables. If you are given the
mean and the covariance the distribution is fully specified  like that is okay I mean there
is nothing you know that is something which is special for Gaussians  but it is something
which makes sense. So for example if you look at

f x (X1 ,X2 , ... ,Xn)= 1

√(2 π)
n
|Cx|exp

−(X−m x)Cx−1
(X−m x)H

2
.

 That is this is something which is special. This  is again the matrix or vector version of
the corresponding Gaussian. This is like instead  of 2σ

2 you have a 

Cx−1



over here you have X −mx
on both sides. So this is  the Hermitian should be here and not here apologies yeah. So
that 

(X−mx )C x−1
(X −mx)H

gives  you  a  number.

 So this is the joint distribution of Gaussian random variables.  So there are some couple
of properties that is independent implies I mean independent is same  as uncorrelated
uncorrelated  implies  independence  and  joint  Gaussianness  is  preserved  and  refined
transformations. These are a couple of properties. So this and some more properties of
Gaussian  random variables we will cover in the next lecture. So what have we seen so
far  we have   seen  that  Gaussian  random variables  have  some special  properties  and
especially when you look  at Gaussian random vectors then the distribution is specified
when  you  specify  the  mean  and   covariance.

 In the next lecture we will cover a little more about the relationship between  these
jointly distributed random Gaussians as well as hypothesis testing. Thank you.  you


