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  In the previous lecture,  we have gone through the raised cosine waveform and how
using  sinc   and  raised  cosine  waveform  of  course,  can  solve  the  problem  of  the
rectangular  pulse   being  band  unlimited,  but  we  also  saw  that  using  the  sinc  has
disadvantages especially  in terms of the rate of decay and it is not being robust in the
case there is jitter.  In this lecture, we are going to put together some simple simulations
on GNU radio wherein  we will explore the characteristics of the raised cosine and in
particular using the  root raised cosine waveform.  We will then repeat our amplitude
shift keying simulation that we did some time ago using  root raised cosine.  We will use
both the root raised cosine at the transmitter as well as the receiver and  show that this
particular approach yields a way wherein you can recover the symbols  that are sent at the
transmitter  at  the receiver  without  any issues  while  generating  a  signal   that  is  band
limited.  So that is the purpose of this particular lecture.  I urge you to try it out on your
own  as  well.

  Before we begin our pursuit of pulse shaping for modulation, we will first inspect a
couple  of useful blocks that allow us to do interpolation and decimation easily.  First let
us introduce the interpolating FIR filter block that you have seen already.  So, Ctrl F or
Cmd F interpolating FIR filter and we will place it over here.  We will begin with float to
float  real  taps.

  We will then also use a vector source that will provide initial data for this filter.  So, Ctrl
F, Cmd F type vector grab this vector source, double click the vector source.  To keep it
simple, we will set the vector source to float and we will give the inputs  as some set of
numbers let us say 1, -1, 3, 2.  Let us say these are the sequence of 4 numbers 1, -1, 3,
and 2.  Now these numbers are going to be generated at around the sample rate and fed to
the  interpolating   FIR  filter.

  Now we will also add a throttle Ctrl F or Cmd F type throttle, double click the throttle,
we will set the throttle to float, connect the interpolating FIR filter to the throttle  and we
will then get a time sink.  Ctrl F or Cmd F type time get this time sink, set this time sink



to float, we will add a  grid and auto scale say ok and then we will connect this over here.
There is only one thing missing which is setting the interpolation and the taps.  Let us do
this right now.  As an example, let us set the interpolation to 2 which basically means that
for  every   input  sample,  this  filter  is  going  to  output  2  samples.

  Then what are the taps?  This is the filter that is going to be applied on the input samples
before outputting them  from the output of this interpolating FIR filter.   As a simple
example, let us set this to be [1,1].  What this will do is that it will repeat every sample
twice.  Let us actually have a look at whether that is the case.  If we execute this flow
graph, let us actually middle click and choose stem plot and let  us zoom in to a particular
region.

  What you can see is that you have this 1 1, you have this -1 -1 and then you  have this 3
3 and then this 2 2 which is exactly the same samples as the original vector source  except
that they are repeated 2 times to the same weightage.  Let us actually change this and let
us set this to let us say 0.5.  So the second tap of this filter is 0.5.  Now if I execute this
flow graph, again middle click, set it to stem plot, zoom in.  You can see that we start
with, let us say we go to the absolute beginning so that we  have no ambiguities.  It is  1/2
because it is one followed by 1/2.  So the impulse response of your filter which is 1, 1/2
is  imposed  here,  -1  -1/2.   Here  you have  3  and  1  and a  1/2  followed  by  2  and  1.

  An important point is that this filter did not have the same length as the interpolation.
As an example, let us actually set this to something like 1 1 1 1.  In which case, you can
imagine that this 1 is essentially replaced with 1 1 1 1 and then  this -1 is going to become
-1 -1 -1 shifted by 2 samples and added.  Let us visualize this one.  We will go to the
stem  mode.

  We will go to the absolute beginning.  So the original 1 became 1 1 1 1.  Subsequently,
the -1 became -1 -1 -1 -1 and is added after a shift  of 2 because our interpolation is 2 and
those 1s and -1s got cancelled.  These subsequently, the -1 -1 -1 -1 got added with these
3s.   So  3  3  3  3  on  the  second  and  third.

  So you have a 2 2 over here and then the effect of this 3 and 2 come together and
become 5.  So an important point to remember is that the taps of the filter need not be the
same  length as the interpolation.  In fact, if it is less, for example, let us say it is square
bracket 1, this is going  to do the traditional upsampling by insertion of zeros.  In other
words, we are going to get 1 0 -1 0 3 0 2 0.  If you look over here, make it stem 1 0 -1 0 3
0  2  0  which  is  exactly  what  happens   over  here.

  The corresponding undo operation is called the decimation.  So in this particular case,
let us actually say go back to our 1, 1 which is basically  upsampling by repeating the



sample twice.  So now your 1 -1 3 2 is going to become 1 1 -1 -1 3 3 2 2.  Let us make
this  stem.   As  you  can  see,  it  is  1  1  -1  -1  3  3  2  2.

  Now let us get back these original samples by decimating this interpolated value.  To
decimate this interpolated value, we are going to fetch our decimation filter.  So control F
for command F, type decimate and we will get the decimating FIR filter.  We will double
click it, set it to float to float real taps, set the decimation to 2 and  now the question is
what should the taps be.  Let us start with the most basic one which is square bracket 1
which  is  the  same  as  square   bracket  1,  0.

  And let us repeat a QT-GUI time sink.  I will do control C, control V or command C
command V. Connect this and connect the  interpolating FIR filter to the decimating filter
and see what we get.  Let us label our sinks so that we do not have any confusion.  We
will  double  click  this  and  call  it  interpolated.

  We will double click this and call it decimated.  Let us now execute this.  So this is the
decimated and I am just going to middle click and say stem plot.  This is the interpolated.
So  now  let  us  zoom  into  the  beginning  of  both  of  these.

  So here we have 1 1, -1 -1, 3 3, 2 2.  Over here we have 1 -1, 3 2, 1 -1, 3 2 which is the
exact same input sequence  at the exact same rate which makes complete sense.  Now let
us change this decimating filter to make it 1 1 and see what we get.  If you make it 1 1
and let us look at the stem plot, we end up getting something like  3 0, 2 5, 3 0, 2 5.  Why
do we get this?  This is because this filter is applied on the interpolated output and the
result  is   essentially  presented  after  decimation.

  So in this particular case, let us make both stems.  Over here what we have is, let me go
to  the  beginning of  this  as  well.   We have a  3 here.   The reason is  because  if  you
essentially take this 1 1 filter and flip it, what is to the  left of -1?  To the left of -1 over
here there is nothing but if you go to the right, let us  look at this particular 1.  To the left
of  -1  is  3.

  Over here you can see that 2 rather.  The left of -1 is 2.  So the 1 multiplies this 2 and
the 1 multiplies this 3 and you end up getting 3, then the  one multiplies this one and the
one multiplies this -1 and you end up getting 0, then  the one multiplies this particular 3
and this particular -1 and you end up getting  2.  Finally, the 1 ends up multiplying this
particular 2 and 3 and you end up getting 5.  Therefore, in this case, the filter essentially
applies  on  the  interpolated  input  and  the   result  is  presented  to  you and because  of
downsampling  you  have  to  go  one  off.

  So, every other output is what you get.  In other words, you apply the filter 1 1 onto this



input and take every other sample to  get this decimated output.  You can see that this
particular pattern repeats and you end up getting what you expect if  the input is 1 1 -1 -1
3 3 2 2, you filter take every other sample.  Pulsing and decimating are very common
operations and this will come in handy when we do our  pulse shaping.  Now, to get an
idea of how we can do the pulse shaping, let us actually inspect how our root  raised
cosine  pulse  looks  like.

  Let us first see how we can create the RRC filter using GNU radio.  Now, to this end we
are going to use an inbuilt GNU radio functionality which is in python  to create the filter
taps.  So, let us do that by just putting it in a variable.  So, I am going to say control f for
command f and variable  and grab the variable  over  here,  double click it  and call  it
rrc_taps.   Now,  this  rrc_taps  is  going  to  contain  our  RRC  filter  samples.

  To design this RRC filter, we are going to use the filter design tools inbuilt in GNU
radio, but write the code for it or rather the one line code for it.  You double click this and
you say FIRDES short for FIR filter design dot root_raised_cosine.  We will first need to
specify the gain which is 1 followed by the symbol rate which in  our case is a 1000
symbols per second.  Then we need to give the excess bandwidth which we can choose as
let  us  say  0.35  to   begin  with  and  finally,  the  number  of  filter  samples.

  Let us say 8192 seems to be a good number although this is only an indicative number
your actual filter may be a slightly different length.  Let us say ok.  Now, if you put your
mouse over this, you will get an 8193 length filter which looks  like some you know it
looks like there are 0 values and it looks to be symmetric also  because it starts and ends
with similar values fine.  Let us now inspect how this filter looks like.  We will get a
vector  source  control  f  command  f  vector  source.

  Double click the vector source.  The output type we will set to float and we will just
make the vector rrc_taps.  Next we will add a throttle.  The throttle we will double click
make it to float.  I notice that our sampling rate should be 64 k.  So, let us change by
double  clicking  it  to  64000.

  We will then connect our vector source to the throttle and just add a time sink.  So,
control f or command f and get a time sink.  Double click the time sink and make it float.
Add a grid, add auto scale and for viewing it conveniently let us just set the number  of
points to the length of the rrc_taps.  We can do that by just writing a python expression
len  and  in  brackets  rrc_taps.

  This will make it convenient to visualize.  We will say ok, connect this, run the flow
graph and you will essentially see what looks  like a sink or what looks like a raised
cosine, but it is not really a sink it is a root raised  cosine because if you inspect it very



carefully we want the zero crossings to be perfect.  So, let us say that if you look over
here this is going to be at 64 milliseconds there  is a peak and at 65 milliseconds you
expect a zero crossing which is not there.  This is not a cause for concern because the
raised cosine pulse is what is guaranteed  to have the appropriate zero crossing not the
root  raised  cosine.   Let  us  see  what  happens  if  we  get  a  raised  cosine.

  To get  a  raised cosine we just  need to  convolve the root  raised cosine with itself.
Alternately in the Fourier domain you have to multiply the Fourier transform of the root
raised cosine filter with itself.  So, let us do the convolution we will just say control f for
command f and get an interpolating  FIR filter take that and place it here we will double
click it interpolation we will  keep as 1 we will float to float real taps we will set the taps
to rrc_taps  and say ok and we will view it on the same time sink.  So, we will double
click it change the number of inputs to 2 then connect the rrc_taps over  here connect this
over here.  Now if you visualize you will see that this pulse is essentially shifted out the
reason   is  because  there  is  a  delay  which  this  interpolating  FIR  filter  encounters.

  So, add another delay element.  So, we will say control f for command f we will grab
the delay block place it over here  we will double click this delay block set the delay to
int sorry float and the delay  to len(rrc_taps) double divided by 2 and connect the original
root raised cosine pulse through  this delay and now we can visualize you can see that the
both the peaks are close, but  it is still very inconvenient.  So, let us make let us remove
this delay from here and let us instead connect it to the  second one.  So, connect the
output directly connect this delay over here and let us execute this and  now we can see
that the red one is what we should expect should have the zero crossings.  So, let us zoom
in a little the red one seems to have a peak over here of 0.0157 why that  is we will see
momentarily it has a peak at 64 milliseconds and it goes to 0 at 65 milliseconds  which
satisfies  our  Nyquist  ISI  free  criterion  much  like  the  sinc.

  Another thing is that you can see these little oscillations.  Let us actually handle those
things one by one.  The first thing is that we can change the gain over here for example,
we can set the  gain to be let us say 64.  We set the gain to be 64, if you then run you can
see that there is a high peak over  here of 64.  The reason this happens is because if you
convolve  this  filter  with  itself  there  is   a  significant  amplification.

  So, what we can do is we can just take away that gain over here by dividing all the
values  by 64, but to do that we must first convert this to a NumPy array.  So, let us do
control f or command f and say import we will double click this and say import  NumPy
and then we will change this fir variable fir dash variable to NumPy dot array parenthesis
and close the parenthesis over here and now we can just divide this by samp_rate upon
1000 which is 64 and let us inspect it over here.  Now you can see the amplitudes match.
This is an issue with the scaling which we have addressed by just adding a gain of 64



and taking it away when we do the raised cosine.  So, now when you have the raised
cosine  at  64  milliseconds  it  is  a  peak  and  at  65  milliseconds   there  is  a  0,  at  66
milliseconds there is again a 0, 67 milliseconds again there is  a 0 which is exactly what
we  need.

  Next let us have a look at these oscillations.  Let us say around 66, 67, around 68
milliseconds  this  goes  away.   Let  us  now  change  the  rrc_taps  to  have  this  0.

35 become something very small let us say  0.0001.  0.0001 is very close to a sink.  So,
let us execute this.  You can clearly see that this is a very sink like behavior and even
around 81, 83, 90,  100 milliseconds it does not really die down because this is very close
to a sink.  There is almost no excess bandwidth.  Let us now double click our variable and
let  us  actually  make  this  we  check  0.

35 let  us make it 0.9 which is 90 percent excess bandwidth.  Remember that at 0.35
around 69 milliseconds we had a very small amount of amplitude.  Now if you zoom in
you can see that even around 66 milliseconds the amplitude essentially  dies down.  So,
here you can clearly see that the excess bandwidth which is being used makes the pulse
thinner in the time domain at the cost of making it fatter or increasing the bandwidth
usage  in  the  frequency  domain.

  So, now this particular picture allows us to understand how the root raised cosine and
raised cosine work.  So, if you inspect this particular command that we have used to
generate the root raised  cosine this will come in handy when we generate root raised
cosines for up sampling and down  sampling with our interpolating and decimating FIR
filters and that is something we will  see subsequently.  We are now going to repeat our
or PAM-4 experiment, but this time we will use the root raised cosine  pulse and use the
root raised cosine to recover our symbols as well.  Since we are going to use our same
modus operandi let us double click this sample rate set it  to 64000.  First control F for
command F we will grab a random source, the random source we will  place here and let
us say it goes from 0 to 4 which will give us numbers 0, 1, 2, 3 and  we will make it 1024
samples  which  keep  repeating.

  We will then grab the chunks to symbols and the chunks to symbols will connect the
random  source symbol table let us make it 0, 1, 2, 3 output type let us keep it as float and
one dimension.  Next we are going to up sample this and using an interpolating FIR filter,
but before that  let us design our root raised cosine filter.  So, I am just going to say
control  F or command F and say variable  and grab the variable  block  place it  here
change the id to rrc_taps and the value will be FIRDIS dot root_raised_cosine and let us
we will set the gain to exactly the amount  of up sampling that we are going to do.  So,
sample  rate  upon 1000 then we are  going to  specify  the  sampling  rate  then  we will



specify the symbol rate which is 1000 then we will set an excess bandwidth of about 0.4
and finally, we will set the length to be 8192 any reasonable length which is enough
8192  is  good  for  us.

  Next we will get the interpolating FIR filter.  So, control F or command F and type enter
and get the interpolating FIR filter double  click it set it to float to float the interpolation
will be 64 or we will write samp_rate upon 1000 which is basically we want 1000 you
know want  1  symbol  every   millisecond  so  we  set  it  to  samp_rate  upon  1000  taps
rrc_taps.  What this will do is that it will essentially place 64 zeros in between each of
these samp  symbols that are being generated and then filter them with this rrc_taps so
that you  get a nice root raised cosine response.  Connect this over here we will set the
throttle so control F or command F we will grab a throttle  we will double click the
throttle and set it to a float and finally, control F or command  F and type time and get a
time sink we will double click the time sink set it to a float  we will say rrc and number of
points let us make it 8192 and let us make it yes and yes  for grid and auto scale and let us
connect these and inspect what we get.  So, we end up getting some waveform which
seems to indicate that there is some data  that is going on we cannot really make out the
values well the values seem to be between  0 and near 3 which makes sense but exactly
figuring out the 0 crossings etc. is not  really possible because that makes sense only
when you do a raised cosine.  As a quick example let us just double click this and then
make it 2 inputs and pass the  same sequence to the same filter and inspect what happens
with a raised cosine so you can  click here hit control C or command C control V or
command V to paste double click it and  set the interpolation to 1 and connect this FIR
filter to this FIR filter and over here  we can visualize and we will be able to see our
actual data in this particular signal  how if you run this of course, there is a gain issue to
address the gain issue we will  again close this say control F or command F say import
we will import numpy type import  numpy change the rrc_taps to be a numpy dot array
which  is  convenient  for  doing  arithmetic.

  So, we are set just enclosing this within a numpy dot array now these rrc_taps we are
going to  divide by samp weight upon 1000 notice the double divide for integer division.
Now let us stop and  let us see if we can make something out over here. So, let us see it
appears that over here  there is 0 around the 40th millisecond. So, now let us go to the
41st millisecond at the 41st  millisecond the value seems to be around 3 at the 42nd
millisecond the value seems to be 3 again at  the 43rd millisecond the value seems to fall
down to 1 and at the 44th millisecond it seems to be 3.  So, it does appear that when we
have an actual raised cosine we are able to see the actual data  with that is embedded
within  this  root  raised  cosine  signal.

 Our next task is to decimate  after putting the raised root raised cosine and recover the
data for this we are going to get a  decimating FIR filter. So, control F for command F



decimating FIR filter will double click this  decimating IR filter set the decimation to 64
or rather samp_rate upon 1000 taps are rrc_taps  the same ones we are choosing they are
symmetric we do not really mind say ok we will set it to  float real taps we will get a
separate time sink. So, we will say control F for command F and QT-GUI  time sink we
will double click it we will set it to recovered data we will require a grid we will  use auto
scale let us also set it to a stem plot for convenience and we will also make it float  and
connect this output over here and it is interpolating filter output to this and let us  try
executing this. Now, let us look at what this recovered data is of course, there is a scaling
what does that scaling in the decimating filter will divide by 64 or samp_rate upon 1000.

 Now,  let us actually inspect this. So, as we can see the recovered data seems to make
sense because  it takes values 0 1 2 and 3 in a random sequence indicating that this is
likely related to the  input random source. To check we can just get the random source
also over here we double click this  GUI time sink set the number of inputs to 2 we then
get an int to float. So, control F for command F  say int to float we connect this random
source over here and before we connect this particular  int to float directly there is a delay
because  this  interpolating  FIR  filter  is  going  to  cause   some  amount  of  delay  this
decimating FIR filter is going to cause some amount of delay. So,  we are going to add
control F for command F a delay block and we will double click this  delay block set it to
float and we will  set the delay to 128. The reason we choose the delay as  a 128 is
because this is the effective delay between the received and the transmitted signals  due
to  the  causal  nature  of  this  particular  RRC  filter.

 So, now, we connect this over here and  connect this over here we can hit play and we
see that the input and output match exactly.  The final step for us is to ensure that the data
rather the spectrum usage is as promised  for example, in this case we have said that we
are using about 40 percent of excess bandwidth.  Let us do control F for command F and
grab an FREQ QT-GUI frequency sink we will double click it  we will set the type to
float we will set the window type to rectangular we will also set a  grid and auto scale and
let us connect the output of the interpolating FIR filter over here and see  what the actual
excess bandwidth usage is. So, there is an extra peak that can be attributed  to the fact that
our symbols are between 0 and 3 as opposed to between you know something which  has
a middle midpoint around 0. If you really wish to address that you can choose a different
set of  symbols like -3 -1 1 3 these do not suffer from that problem because this will give
you  0  average  DC.

 So, in this case you will now see that the spectrum usage is around you know  -0.6 to
around 0.6 which indicates like when you compare 0.5 to 0.6 that is about a 20 percent
20  percent  over  here  corresponding  to  40  percent.

 Let us go to the one extreme let us set this to  not 0.4 but 0.0001 which is very much like



a sinc in which case you will see a very flat spectrum  ranging between -1/2 and 1/2
kilohertz which is exactly the amount you need in order  for you to get the in order for
you to get the you know 1 kilo sample per second symbol.  Let us go back to our original
0 1 2 3 and let us go to the other extreme where  we set the excess bandwidth to 0.9 in
which case you will see that you end up using almost the  whole bandwidth from about -1
kilohertz to about 1 kilohertz. Let us actually start you know  let us say max hold or let us
do an average. We will start averaging it so you can see that the  pulse is being used from
about  -1  to  1  kilohertz  -0.

9 to 0.9 kilohertz which is  strongly indicative of the fact that we are using a lot of excess
bandwidth. The waveform also looks  very much like a sink related one which sorry the
you know root raised cosine 1 where you can almost  directly  make out the original
sequence and at around the midpoint let us say around 0.5  you will get about 50 percent
bandwidth usage so it will go till around 0.7 or 0.8 kilohertz  so it is about -0.7 to 0.7
kilohertz. So, in this manner we were able to put together  a baseband waveform that
utilizes the root raised cosine and this enables us to design pulse shaping  that honors the
bandwidth constraints much much better than using a rectangular pulse.  In this lecture
we have put together a simulation of the root raised cosine. We have seen how using  the
root raised cosine both at the transmitter and the receiver allows you to have an ISI-free
communication  that  is  you  get  the  raised  cosine  that  satisfies  the  Nyquist  ISI-free
signaling criterion. This of course is satisfied by the sinc as well but the excess bandwidth
that  the raised cosine allows you to trade off some properties particularly the 

1/ t 3

decay  that makes the raised cosine much more robust to jitter. The root raised cosine at
both the  transmitter and receiver is a very practical approach that is often employed in
many  practical   communication  systems.

 Of course in this simulation we have ignored the presence of the channel  

gc (t ).

In future lectures after we cover demodulation we will carefully look at a way  by which 

gc ( t )

that is the channel is also present and can be compensated for by using  equalization.
Thank you.


