
Digital Communication Using GNU Radio

Prof Kumar Appaiah

Department of Electrical Engineering

Indian Institute of Technology Bombay

Week-03

Lecture-13

  Welcome to this lecture on digital communication using GNU radio.  In this lecture, we
are going to discuss more about modulation and pulse shaping and how  different pulse
shapes affect the performance when you perform digital modulation.  So, as far as the
outline  goes,  we  will  be  particularly  concerned  about  the  spectral   occupancy  of
modulated  signals.   We will  then discuss the concept  of Nyquist  ISI-free modulation
which ensures that your  symbols when they are detected at the receiver do not undergo
any inter-symbol interference.  We will then discuss minimum bandwidth Nyquist pulses
and excess bandwidth and explore what  trade-offs are involved in their design and use.
Finally, we will look at raised cosine and root raised cosine pulses and how they offer  an
excellent  trade-off  to  utilize  the  ISI-free  signaling  while  also  having  other  benefits.

  Spectral occupancy is something which is of importance as we have discussed earlier.  It
is important for you to restrict the signal to be within a frequency range that is allotted  to
you especially if you are being provided this on a license or under any other constraint
imposed by the system.  So, let us look at our standard digital communication waveform.
We have 

s (t)= ∑
n=−∞

∞

b[n] gTX (t−nT ) .

  This is the standard approach of using the pulse 

gTX (t)

to send the symbols 

b[0] , b[1] , b[2] etc.

separated by T symbols sorry T seconds in between each pair of symbols.  So, you are
essentially sending one symbol every T seconds using the pulse 



gTX (t) .

Now,  when  it  comes  to  exploring  the  how  much  spectrum  this  particular  signaling
approach  involves using, we will assume initially that 

b[n]

are zero mean and its uncorrelated  sequence that is 

b[n]

is a random process which has zero mean and is uncorrelated.  In other words, 

E(b [n]b[n−k ])=δ [k ]

as you have seen earlier  possibly  with some scaling.   In such a situation,  the power
spectral density of 

s (t)

is given by 

E[|(b [n])2|]
T

|gTX (f )|
2

.

  So, this is the Fourier transform of 

gTX (t) .

This particular equation is of essence because what this says is that the spectral usage  of
your transmit signal 

s (t)

is nearly entirely determined by the Fourier transform of your  

gTX (t) .

In other words, if you design your 

gTX (t)

to have a very small spectral footprint, you  are going to use a very small amount of
spectrum and if your 

gTX (t)



uses a large amount of spectrum,  then by corollary your 

s (t)

will also use the similar spectrum.  So, it is essential for you to design your 

gTX (t)

or if you look at the Fourier  domain 

gTX ( f )

to  occupy  only  the  amount  of  spectrum  that  is  necessary.   So,  let  us  start  simple.

  The rectangular pulse is the most convenient to design and analyze and as you have
already  seen it is very easy for you to imagine rectangular pulses because your symbol
takes that value  for T seconds, then again for the next block of T seconds it takes a
different value and  so on.  The problem is as you have seen in the previous slide, your 

gTX (t)

essentially determines  the spectrum which you use and a rectangular pulse has a Fourier
transform which is  a sinc  which is  a very wide footprint  and rectangular  pulses are
generally  unsuitable  for  bandwidth   constrained  usage.   Even  otherwise  the  wide
spectrum means that it undergoes some transformations when it  goes through practical
channels which may or may not be desirable.  The other extreme is the sinc.  The sinc is
another interesting signal which is band limited and in fact you can actually  space sincs
exactly T apart and if you sample them at integer multiples of T you will get  the original
symbols,  but  the  problem  is  that  the  decay  is  1  upon  t.

  This will have some practical implications as we will see, but the sinc essentially dies
down very very gradually and this poses many practical issues which may or may not be
desirable.  So the question which we want to ask is what are the best pulses for bandwidth
constrained  signaling  because  rectangular  is  not  good because  it  occupies  too much
spectrum.  The best spectral signal sinc is not good because it has other issues like it
requires  a long temporal footprint.  So what are the best pulses that we can consider for
bandwidth constrained signaling?  Before we talk about those pulses let us just try to
understand the Nyquist ISI free  signaling criterion.  Let us first look at a simple model of
our  communication  system.

  Let us assume that your symbols 

b[k ]



are being sent at the rate of one such symbol every  T seconds.  Then they essentially are
shaped through a transmit filter 

gTX (t) .

This is the same as constructing your transmit signal 

s (t)= ∑
k=−∞

∞

b[k ] gTX (t−kT ) .

Typically there is also this channel filter.  The channel can be a wire channel or it can be
air  or  it  can  be  an  optical  fiber  and  there   are  many  such  possible  channels  which
themselves may have their own impulse response or frequency  response that can affect
your  signal.

  Similarly you have a receive filter  that  is at  the receiver  before you get back your
symbols you will filter them so that you try to maybe undo the effect of the channel or
try to just make some process so that you are able to get the symbols more reliably.  We
will see this in subsequent lectures.  That yields 

z (t)

and this 

z (t)

is sampled at the rate of one sample every T seconds  to get 

z (kT ) .

So the overall channel that you have or overall system that you have which takes you
from  this 

s (t)

or rather this 

b[k ]

through 

z (kT )

is given by 

x (t)=gTX ( t)∗gc(t )∗gRX(t ) .



So now we ask the question what is the condition on 

x (t)

so that 

z (kT )

directly gives us  

b[k ] .

  Of course we are ignoring any delays which may happen that is something which can be
taken care of but the question which we are asking is when can we say that 

b[k ]=z (kT )

despite the fact that there are three filters in between.  It turns out that in the time domain
picture this is when 

x (mT )=1 if m=0 and x (mT )=0 otherwise. 

This will  ensure that 

b[k ]=z (kT ) .

In other words you can think about signals which satisfy this.  A simple example would
be  a  sinc.

  A sinc let us say if you say 

sinc(t /T )

will be equal to 1 when t is zero but  it will be 0 for any other integer multiple of T.  If
you put t as capital T capital 2T minus 3T and so on it is going to be zero.  So sinc is one
of the examples of symbols that satisfy this.  If you now look at this 

x (mT )

as a discrete time signal this essentially corresponds to  the signal 

δ(n) or δ(m)

it does not matter.  What is the Fourier domain interpretation of this?  If you sample 

x (t)



at  the  rate  of  one  symbol  every  T  seconds  that  should  yield  a  flat  result.

  You should get a flat spectrum that is.  That is you know that whenever you sample a
continuous time signal in the Fourier domain  you are going to get copies.  These copies
should be flat that makes complete sense because the DTFT of 

δ(n)

is actually  1.  So this is the interpretation that is in the time domain if you sample the
signal at integer  symbols of capital T you should get one only when m=0 .  In the
frequency domain you get copies and if you basically sample and look at the spectrum  or
a  Fourier  transform  of  the  sampled  signal  it  should  be  flat.

  Let's try to put this in a more practical sense by looking at some simple examples.  Let's
look at the Nyquist ISI-free signaling criterion for a signal that we actually already  know
and use.  So what is the minimum bandwidth Nyquist pulse?  That is what is the spectrum
of that particular signal which uses the least bandwidth and  yet satisfies the Nyquist
criterion.  It turns out that that is if you look at this particular spectrum this is minus one
by 2T t one by 2T and the value is T it is just a constant.  If you now shift this by T and
repeat it this is which is what happens if you sample at  the rate T you get this you get
this  you  get  this  you  get  this  and  this  essentially   yields  a  flat  spectrum.

  In other words if you are going to have a flat spectrum then you are not going to have
the ISI issue what pulse does this corresponds to this  exactly corresponds to the sinc
pulse  of course there is a T scaling but it corresponds to the sinc pulse.  In practice
however  the  sinc  pulse  is  seldom  used  for  two  reasons.   One  is  that  the  tight
synchronization requirement can actually result in large ISI if the sampling  time is not
perfect.  That is if you have this kind of behavior where it falls you know very slowly
then if  you have a neighboring symbol which may look like this and if you now let me
draw the axis  also if you now sample exactly at this point then the contribution of this
red sinc is  zero if you start sampling over here the contribution of this red sinc is not zero
and you will  have one more sinc because let us say you will have yellow sinc let us say
which is  also present so the yellow sinc is also coming and adding up oops sorry so
yellow sinc is  also going to come and add up the red sinc green sinc all these will add up
and these  are essentially going to cause these are essentially going to cause you a lot of
inter symbol interference  so this one is going to get added up and then this one is also
going to get added up and  this will cause a lot of inter symbol interference even though
there is  no other imperfection   or noise.   So the compromise is  to make the sinc or
whatever pulse you have die faster which you can achieve  by using excess bandwidth.

  So in order to avoid this tight synchronization requirement we want a pulse that has the



property  that it dies much faster that is it undergoes something like this that is it should
not  have too much of an impact two or three symbols down.  Let us see how we can
achieve that.  This is where the raised cosine pulse comes in like in all other aspects of
our engineering  this is an engineering tradeoff here the spectrum is actually expanded in
a controlled fashion  that is your spectrum unlike this rectangle is going to actually start
coming down much  sooner let us say we take the red curve which is a is 0.25 it starts
coming down sooner  and then goes beyond 1 upon 2T and only then dies.  So what does
this correspond to this s of f is defined as T for mod f less than 1 minus  a upon 2T t upon
2 times 1 minus sine mod f minus 1 upon 2T pi t upon a over here and  0 otherwise.

  So why is this called raised cosine it is because over here this looks like a cosine  it is
like it is actually a cosine it is a 1 minus sine is actually you know cos square  so you can
actually  just  look  at  it  as  a  raised  cosine  and  what  does  this  achieve  this  particular
spectrum has many of the desirable properties over and above sinc for example in this
case  first is it looks like when a is close to 0 this is exactly a sinc but as you make a
larger and larger the spectrum becomes fatter and fatter so potentially you may have in
the time domain the signal becoming narrower and narrower may have smaller decay.
Let us see whether that is the case.  So this is actually a raised cosine for a equal to let us
say 0.5 so what happens is  this you have 

s (t)=sinc(t /T )
cos(πat /T )

1−(2at /T )
2

this is the inverse Fourier transform of the 

S ( f )

that you saw in the previous  slide.  Now you may say that this looks just like sinc in fact
it has sinc on top of it but  actually what happens is there is a 

cos (πat /T )

which is fine but the denominator  there is a 

(2at /T )
2

so a sinc is actually 

sin(π t /T )

π t /T

so the sinc is essentially proportional  to 

1/ t



and for large t this is proportional to 

1/ t2

so this is  effectively proportional to 

1/ t3

for large enough t and what does this mean  when you look farther and farther away the
amplitude is going to be much lower than that  of a sinc so if you look carefully at this
red curve you can clearly see that when compared  to the sync the raised cosine dies
much faster in fact its amplitude seems you can even ignore  this amplitude after 2T
while for the sinc its actually pretty high in fact for the sinc  it goes down as  1/ t so
may need to go at least 10 or 11 times T into the time axis  for you to have a small
enough amplitude this way the raised cosine gives you a much much  more advantage in
the time domain in that it does not cause too much of issue when you  go even 2 or 3
symbols away unlike the sinc now one more interesting thing is that you  will see that the
raised cosine actually seems to honor the zero crossing criteria that is  

x (mT )=1 only for m=0

or 

s (mT )

in this case so then can you be sure  that the raised cosine is also a Nyquist pulse in fact
that turns out to be true as  we will see and the key advantage is that 

1/ t3

is the rate of decay and the  impact of current symbol on future symbols even if you
sample incorrectly is lower and  you have lower penalty for incorrect sampling locations
and you have you also satisfy the  raised cosine you know the ISI free criterion why is
that the case so if you briefly look  back at the expression you have to take this particular
expression and you have to then  shift it by T and then just see what happens if you shift
this particular curve by T you  will get something like this and this should be added these
you know this and the corresponding  curve should be added if you add them up the
question is does it become 1 because we want  the sampled signal to have a Fourier
transform which is flat at 1 so the question is does  this happen it turns out that if you
actually shift the s of f which corresponds to the  rate root race rather the raised cosine
then this particular curve the red curve which  is at 1 upon minus 1 of you know exactly
as 1/T  and the red curve which is at −1/T  so this just to you know be sure I am
going to this part is actually  1/T  this part is actually  −1/T  if you now look  at
these two points so if you look at these points over here there is no problem it is  flat over



here there is no problem it is flat the question is what happens in this part  similarly on
the other part  it  turns out that  that  spectrum with that  1 minus sign  expression was
designed  carefully  in  such  a  way  that  if  you  actually  add  those  two  up   with  the
appropriate expressions they will add up to 1 that is if you evaluate 

∑
m=−∞

∞

S ( f+m /T )

you will end up getting 1  for all values of f which is exactly what you need because that
is  what  the  Nyquist   ISI  free  criterion  says.

  So now what is the main takeaway from the raised cosine? The raised cosine is an
interesting  pulse because it allows you to trade off the bandwidth usage you end up using
more bandwidth  over here unlike a sinc which uses only this much bandwidth but as a
return what you get  is that you get a time domain pulse which decay is much faster in

fact it decays as 1/ t3   and has several other advantages naturally there is a penalty in
the bandwidth  usage so you do not want to use too much of bandwidth because then that
will make your  spectral footprint larger so you use the correct amount of bandwidth in
order to use these  kinds of pulses.  So just a practical note in practice whenever people
perform these kinds of signaling the  spectrum always uses guard bands in other words
when you say 5 megahertz it is 5 megahertz  but because you are using a raised cosine
you may spill over up to 5.5 megahertz so  the next channel or next users signal will
actually start at 6 megahertz and go to 11  megahertz so it is like a 1 megahertz of gap for
you to accommodate these kind of raised  cosine pulses and because the raised cosine its
Fourier transform has a slight expansion.  So in this way the raised cosine has several
advantages  and  we  will  actually  evaluate  this   on  GNU radio  to  confirm that  these
advantages actually carry through.  So now what is the root raised cosine pulse?  If you
recall our system model wherein we had 

b[k ]

which went up to 

z (t)

and we got  

z (mT )

we actually had this 

x (t)



that took care of all the transmit pulse shaping the  channel and the receive pulse shaping
which  should  be  our  receive  pulse  shaping.

  So if you look at this particular 

x (t)

we want this to actually we want to design this  in a way where the Nyquist criterion is
satisfied.  So you need to choose 

gTX (t)

and choose 

gRX (t) .

Typically 

gc (t)

is not something which is in your control it is medium dependent and for  example if you
use a copper cable or a coaxial cable depending on how much bandwidth you  use 

gc (t)

may be flat or 

gc (t)

may be looking like an impulse 

gc (t)

may have some  other impulse response.  So it is highly dependent on the medium.  So if
you have a particular medium you have to account for 

gc (t)

typically you may try  to design your 

gTX (t) and gRX (t)

to  accommodate  for  it  you  know  if  it  is  possible  at  all.

  Sometimes what people do is they say let's take 

gc (t)=δ(t)



for our design  and then later we will compensate for it.  So compensation for it is called
equalization which we will see in a later class but for  now we are going to assume that 

gc (t)

is not there or in other words that 

gc (t)=δ(t) .

If you take 

gc (t)=δ(t)

for simplicity then one option for us is to choose both 

gTX (t) and gRX (t)

to be the same pulse 

g(t) .

This has many advantages because your design is essentially design effort is hard because
both the 

gTX (t) and gRX (t)

are the same but this also has another major advantage in that 

gTX (t) and gRX (t)

are matched to each other.  But the question is we want a raised cosine pulse effective we
want 

x (t)

to  be  a  raised   cosine.

  So how do we do that?  If we look at the Fourier transform of 

g(t)

and let it be 

G( f )=√S (f )

where 



S ( f )

is the Fourier transform of the raised cosine pulse.  So in other words the root raised
cosine pulse is obtained by taking the inverse Fourier  transform of the square root of the
Fourier transform of the raised cosine.  So in other words the square root is not taken in
the time domain it is taken in the frequency  domain.  So you take your raised cosine
pulses Fourier transform you take its square root as you  know as 

√S (f )

find its inverse Fourier transform and that will give you the root  raised cosine pulse.
Now if you look at 

gTX (t)∗gRX (t )

the Fourier transforms will be 

(√S ( f ))(√S ( f ))=S( f )

which is our raised cosine pulse and you know  that 

S ( f )

satisfies the condition that summation 

∑
−∞

∞

S( f +m /T )=1

that  is  it  satisfies  the  Nyquist  ISI  free  criterion.

  So it is actually useful for us to choose 

gTX (t) and gRX (t)

to be the same root raised cosine  pulses where the root is taken in the frequency domain.
In other words if you take this 

√S (f )

is essentially obtained  by taking square root of the you take square root of this or let us
not show it let us  assume that this is just square roots in this case there is not much
difference.  So you take the 

√S (f )

where the 



S ( f )

was the old one you take its corresponding time domain pulses

gTX (t) and gRX (t)

and the resulting  spectrum is 

S ( f ) .

So the root raised cosine is something which is very commonly used and this root raised
cosine is something which we will explore in the next  GNU radio lecture as well.  In
practice of course as we mentioned 

gc (t)

cannot be ignored so the effective system  is 

x (t)

and even if you have chosen 

gTX (t) and gRX (t)

to be equal reason we have written 

gTX (t)

is because we chose 

gTX (t)=gRX (t)  

then you are going to get the raised cosine convolved with 

gc (t) .

  So we have to compensate for 

gc (t)

somehow and here we call it equalization because we need  to have some other particular
system  or  filter  that  will  equalize  the  channel.   So  what  does  equalization  mean
essentially we want something which results in something  which is flat.  Unfortunately
we do not  get  something  which  is  flat  we get  something  which  is  like  this.   So an
equalizer is something which essentially offers just a compensation so it does something
like  this  so  that  the  product  is  flat.



  So it essentially equalizes the gain.  So equalization is something which we will see
when we discuss demodulation and that  is something which we will see soon.  But now
the simplification which we use is we will design an equalizer so we will assume  that our
bandwidth in our bandwidth of interest it is actually flat which means we can ignore  

gc (t)

or there is  someone who has designed the equalizer  within our bandwidth of interest
which  means  our  raised  cosine  essentially  works.   To  summarize  pulse  shaping  is
important and necessary for honoring bandwidth constraints  and like ISI free signaling
pulses such as  sinc have some advantages of course we discussed  that  sinc has some
disadvantages in particular because of its very very slow decay.  So we looked at the
raised cosine pulse which is a tradeoff over sinc.  It uses more spectrum but it is less
susceptible  to  jitter  etc.

 because  of  the  fact  that  it   decays  very  quickly.   In  practical  scenarios  we  need
equalization to compensate for channels in the band of  interest that is we need to be able
to filter so that the effect of the gc (t) is also  compensated.  In the next lecture we will

actually have a GNU radio demonstration of the root raised  cosine pulses and how it
impacts your design of digital communication transmission systems.  Thank you.


