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  Welcome to this lecture on Digital Communication Using GNU Radio.  Continuing with
our exploration of evaluating digital communication methods using GNU radio.  In this
lecture, we are going to start with quadrature amplitude modulation.  This approach can
be viewed as a combination of both amplitude shift keying as well as  phase shift keying
that you have viewed in the previous few lectures.  There are several advantages in terms
of the way signals can be generated in this approach  are, and in particular, this provides a
more efficient way to transmit information as well  as we shall  see when we discuss
demodulation.   The other thing that we will  explore as part  of this  lecture is aspects
related to frequency  shift  keying wherein variations in frequency are used to convey
information and that is  a special form of orthogonal modulation and this also has several
tradeoffs  as  we  shall   explore  when  we  look  at  demodulation.

  In the past couple of lectures, we have seen modulation formats amplitude shift keying
and phase shift keying.  In the case of QAM that is quadrature amplitude modulation, this
can  be  viewed as  a  combination   of  both amplitude  and phase  shift  keying.   As an
example, the QAM 16 constellation is shown here.  In this case, there are 16 symbols laid
out  in  the  form  of  a  grid.

  A sample bit allocation for the symbols is also provided.  As you can see, purely using
the phase as criterion will not allow you to decode these  symbols because this particular
symbol and this particular symbol both of them have the  same phase.  Therefore, you
need a combination of both the phase as well as the amplitude in order  to decide which
symbol was sent.  The reason quadrature amplitude modulation is sometimes preferred
over PSK that is phase  shift keying is that this arrangement of constellation points as we
shall see is more robust to noise  than when you compare it to the phase shift keying
analog that  is  phase shift  keying 16  in  this  case.   In  this  case as  well,  we are still
performing one dimensional signaling where 

ψ1(t )



is related  to 

gTX (t)

and 

b[k ]

is  one  of  these  16  symbols.

  Therefore, you can assume that you have one signal as the basis signal and these 

b[k ]

are essentially values that are taken by the this signal and these values essentially with
magnitude and phase convey the bit information.  Let us now just modify our previous
GNU radio simulation which involved PSK to accommodate  QAM.  Before we move to
GNU radio, let us observe how these symbols are laid out.  For example, this symbol is 1
+1j, this symbol is 3+1j, this symbol is 3+3j while this symbol is 1+3j.  So in essence,
this constellation takes the values -3, -1, 1, 3 on the real or  I axis and -3, -1, 1, 3 on the
imaginary  or  the  Q axis.

  This is useful for us to be able to construct this constellation in GNU radio along with
the chunks to symbols block.  In GNU radio, if we now recall our PSK example, we just
need to make two changes.  The first is that this variable m has to become 16.  So let us
double click it and make it 16 to indicate that we are going to have one of  16 possible
symbols.  We shall say ok over here and the next is that in the chunks to symbols, we
must  enumerate   these  16  possible  symbols.

  For that, we can remove this existing symbol table by selecting it and hitting delete.
Then we can start typing -3-3j, -3-1j, -3+1j, -3+3j then -1+3j, -1-3j, -1-1j and so on and
enumerate  all the 16 symbols.  However, we can use a bit of python trickery to do this in
a more neat way.  I will show you how.  Let us expand this a little bit and we will write a
python  expression  that  will  simplify   the  generation  of  the  symbol  table.

  So, we can say a plus j times 1 j times b for a in and we will say minus 3 minus 1 1  b
for b in minus 3 minus 1 1 3 and we must change the output type to complex.  Now this is
actually a list comprehension that takes all possible values in a that is  minus 3 through
minus  1 and all  possible  values  in  b that  is  minus  3  to  minus  1 1 3 and takes   all
combinations and constructs a list.  If you put your mouse over it, you will see that you
get minus 3 minus 3 j minus 3 minus  1 j minus 3 plus 1 j and you get all of these and the
length is 16.  This is much less error prone although it uses python.  But if you want to
enumerate  it  fully,  you  can  go  ahead  and  do  that  as  well.



  Let  us  say ok and now we are  done and we are  ready to look at  how our  QAM
constellation  and QAM modulation looks like.  Let us execute this flow graph.  Now in
this case, let us start by looking at this particular place.  Let us again set the delay to 75
that we match this.  Now in this case, what do we see?  We see that these waveforms take
1 2 3 4 possible values which are minus 3 minus 1 1 3 and the  other waveform also take
similar  values.

  If you look down at the constellation, if you do the auto scale, you will see 1 of 16
possible values appearing in this constellation.  Finally, how does this look in the case of
the carrier waveform?  When you modulate the carrier, then remember that in this case,
this is a combination of  amplitude and phase shift keying.  Therefore, you are seeing
over here, there is a phase change as well as an amplitude  change.  Over here again, let
me zoom in and show you, there is a phase change as well as a magnitude  change.  That
is what the feature of QAM is, in which case you are changing both the phase and the
amplitude  at  every  time  interval.

  This is 10 milliseconds, this is 11 milliseconds, this is 12 milliseconds.  So, we are still
sending symbols at the rate of a 1000 symbols per second, but each symbol  when you
look at the carrier looks in this form, wherein both the amplitude and phase  undergo a
change.  And as you can see from this squiggly waveforms, you are able to detect the,
rather you are  able to receive the signal and recover them.  Of course, your choice of the
rectangular waveform leads to the slight oscillations.  Nevertheless, these are recoverable
and  reasonably  match  the  transmit  waveform.

  So,  one  small  lesson  is  to  consider  the  QAM  16  modulation  constellation  as  a
combination  of two amplitude shift keying constellations.  That is, if you look only at the
real part, it is minus 3 minus 1 1 3, only on the imaginary  part it is minus 3 minus 1 1 3.
So, it is almost as though you are stuffing an amplitude shift keying signal on the real
axis or in phase part and an amplitude shift keyed signal on the imaginary axis or the
quadrature  part.   And  this  is  a  simple  way  to  understand  how QAM works.   More
complicated QAM constellations  exist,  typically  even powers of 2 although odd ones
exist  some  examples  include  QAM  64  and  say  QAM  256  and  so  on.

  To visualize it,  let us just do one thing really quickly.  We will first just make the
constellation sink auto scale for convenience and let us  make a let us say QAM say
minus 3 minus 1 1 3.  Let us make a QAM 64 constellation.  In the case of QAM 64, we
are  going to  have  not  4,  but  8  possible  values.   So,  let  us  generate  these  somewhat
automatically.

  You say np dot arange.  For simplicity, I am just going to go from 0 to 8 and I am going



to subtract, subtract  3.5 because 0 through 7 the midpoint is 3.5 and let us do this in the
second  part  as  well.   Let  us  put  this  around  parenthesis.

  It should be numpy.  So numpy dot a range 8 gives us numbers from 0 through 7 and
you subtract 3.5 that gives  you numbers minus 3.5 minus 2.5 minus 1.5 minus half half
1.5 2.5 3.5 and this gives  you another 8 and thus you have an 8 cross 8 64 constellation
and one more change is  that we need to make M as 64.  And now if you execute this
flow graph, you get all 64 possible constellation points and  as you can see the number of
amplitudes if you look carefully for the red and blue curves  will be 8 possible amplitudes
namely minus 3.5 minus 2.5 minus 1.5 and so on up to 3.5  and thus this is a combination
of an M-ASK that is 8-ASK on the real, 8-ASK on the imaginary.  So two amplitude shift
keyed waveforms one on the real, one on the imaginary.  So this is a summary of the
quadrature  amplitude  modulation  and  its  key  differences  between   plane  phase  shift
keying and amplitude shift keying.  The last basic digital modulation format that we will
be looking at is frequency shift keying  wherein change in the frequency of the signal is
used  to  convey  information.

  For a simple description of an M-FSK system, you can define 

s1(t)=e
j2π f 1 t I [0 , T ]

indicating that this 

I[ 0 ,T ]

limits this function to between 0 and T.  In other words, 

s1(t)

is this 

e j 2π f 1 t

between 0 and T and 0 elsewhere.  

s2(t)

is 

e j2π f 2 t

within the duration of one symbol.  So this 

I[ 0 ,T ]



is essentially a rectangular pulse between 0 and T.  Similarly, 

sM ( t)=e j 2π f M t I[0 ,T ] .

  For a simple visualization, we can look at a 2-FSK system wherein to send 0, you send
this particular cosine while to send 1, you send this particular cosine.  These two cosines
have a distinct property in that in the duration of one symbol which  is from here to here,
you have two cycles while for sending 1, you have four cycles.  So whenever you get two
cycles, you can conclude that the bit or symbol 0 was sent.  Whenever you have four
cycles within the same interval, you can conclude that the bit or  symbol 1 was sent.
Therefore, by varying the frequency within the duration of a symbol interval, you are
able  to  send  different  symbols.

  Now in this case, unlike ASK, PSK and QAM, the dimension of signaling is actually
more.  The reason is because this particular cosine assuming that it completes two cycles
and  this particular cosine assuming that it completes four full cycles within the duration
of  one   symbol  are  essentially  orthogonal.   Therefore,  to  model  this  particular  FSK
system in our signal basis picture, we need to have  two particular basis signals, 

ψ1(t )=√2/T I[0 ,T ]cos (2π f 1t) ,

ψ2( t)=√2/T I[0 ,T ]cos (2π f 2t)

assuming that 

f 1T and f 2T

are integers.  This means that the signals which are actually being sent are proportional to

[10] or [01]
because  you are either sending 

ψ1(t ) or ψ2( t)

with of course some appropriate scaling, but this  corresponds to orthogonal signaling
because you are either sending 

[10] or [01]
which corresponds  to sending 



ψ1(t )

for that duration or 

ψ2( t) .

So, this is an example of two dimensional  orthogonal signaling and there are various
tradeoffs that are associated with this that we will look at when we look closely in the
demodulation  of  the  frequency  shift  keyed  symbols.

  For now, let us inspect how we can put together a frequency shift keyed signal in GNU
Radio.  One minor aspect is that you can also write this as 

cos (2π f 1 t) cos (2π f 2 t)

and so  on without much of a loss because these are essentially  conveying the same
information.  For example, 

s1(t)=e
j2π f 1 t

its real value also similarly conveys  the same information. In general, if you use 

e j 2π f 1 t

it is not very common  to use 

e− j2π f 1 t

unless you use bi-orthogonal signaling which is something  we will look at later.  Let us
now  put  together  a  FSK  modulated  system  in  GNU  radio.

  Let us now start working on an FSK system on GNU radio.  To build this, we will be
using a new GNU radio block called VCO short for the voltage  controlled oscillator. Let
us first look at how it works and then build our FSK system.  So I am going to first do
control f for command f and grab VCO and take the VCO object and  place it in our flow
graph. I will get a throttle so control f for command f, Throttle make  the throttle float.
We will do a real FSK experiment as opposed to a complex one. Let  us also grab a time
sink so control f for command f and then we will do a short for  command f as opposed to
a complex one. Let us also grab a time sink so control f for  command f time sink. Double
click this, make it float, add a grid, make it auto scale.  We will connect these three items
and  for  the  VCO  we  need  three  parameters.

 Double click  it. First we need the sample rate. Let us first set the sample rate to 64000
for easier  visualization and come here and set the sample rate to samp underscore rate.



The next thing  is sensitivity. So the voltage controlled oscillator essentially gives you a
signal  of the form cos of 2 pi t times whatever is the sensitivity. In other words you are
able   to  control  the  frequency  as  a  signal.

 So whatever input you give you will get as a frequency.  So let us actually call this let us
say 2 times let us say 3.1415 because we are approximating  pi times a 1000. In other
words we are going to get whatever f we give gets multiplied  by 1000. So we are going
to actually choose our f as 1 and 2 which will correspond to  1000 hertz and 2000 hertz.

 Great. Now let me add a coordinate function. So let us say  constant source. So control f
or command f constant source double click this make it  float and make it value 1 and
connect  this  over  here.  Save  it.  Now  let  us  say  that  the   amplitude  is  0.

 We have to set the amplitude to 1. If you execute this flow graph you will  get a sinusoid.
Of course there is some bit of movement that is because we did not do  the pi correctly.
We can actually handle it. Let us actually do control f or command f  say import. We will
grab here double click it and say  import numpy and we will change the sensitivity to 2
times numpy.pi times 1000.  Let us execute this now. Now it is reasonably stable and if
you zoom in you can see that  this is a cosine 9 milliseconds 10 milliseconds a cosine of
exactly 1000 hertz. If I change  this constant source to 2 you can see twice the number of
cycles.  This starts at 9.5 this  starts at 10 this is at 10.5. So this is a cosine for of 2
kilohertz.  In  other  words   your  understanding is  that  whatever  the  sensitivity  is  gets
multiplied by the input and that becomes  the frequency of your cosine. This is used very
commonly in the context of phase lock  loops and frequency trackers as well. We are
using  the  voltage  controlled  oscillator  to   produce  a  frequency  shift  keyed  signal.

 Let us now replace our constant source.  With an actual useful source that we want. So
we will use first a random source.  So control f or command f, Random source. Minimum
is 0 maximum is 2.  It will give us values of the form 0 and 1. We will next grab our
chunks to symbols.  So control f or command f, Grab the chunks to symbols. Place it on
our flow graph.  And the chunks to symbol we will double click. Make it float. And the
symbol table we will  make is a 1 and 2. Because we want a 1000 hertz and a 2000 hertz
sinusoid  or  cosines.

  So we will make this 1 and 2. Dimension is 1. We will connect this over here. Connect
this over here. But before we go ahead we do not want to vary the sinusoid very very
quickly  and  in  fact  we  have  a  mandate  to  make  this  particular  symbol  rate  a  1000
symbols  per second. Therefore we are going to hold this particular value for a 1000
symbols.

  So I am going to get an interpolating FIR filter. Control f or command f, Interpolating



FIR  filter.  Much  like  we  have  been  doing  so  far.

 Let us make this float. Let us make the  interpolation. Sample rate double divide 1000.
This will give us sampling rate divided  by 1000 which is 64 in this case. And we need 1s
of the exact same number. This essentially  holds this value and therefore will hold the
frequency of the voltage controlled oscillator  for 1 millisecond. So connect these and
now  if  we  visualize  we  will  now  get  our  frequency   shift  keyed  waveform.

 Let us stop this and analyze. Over here 6 milliseconds over here  is let us say here is 6
milliseconds here is 7 milliseconds. You have about 1 cycle  which means that this is
exactly a 1 kilohertz cosine. But over here let us say between 8  milliseconds and let us
say this 8 milliseconds and 8.5 milliseconds again you guess I guess  you have 1 cycle
this  corresponds  to  a  2  kilohertz  sinusoid.

 So between 8 and 9 milliseconds  you have 2 cycles. Again here from 9 milliseconds to
10 milliseconds you have 1 cycle. From  10 milliseconds to 11 milliseconds you have 2
cycles. So this way you are able to encode  the 0 as one particular frequency and the 1 as
another  frequency.  So  this  essentially   is  your  frequency  shift  keyed  waveform.

 Let us also inspect the baseband spectrum. Control  F or command F and type fraq. Let
the QT-GUI frequency sink float and connect it. You  will see if you execute this that
there are these 2 peaks one is at minus 1 another is  around minus 2. So therefore, there is
a strong presence of 1 kilohertz and minus sorry 1  kilohertz and 2 kilohertz which is
explained  by  the  fact  that  these  are  the  2  signals  that   we  are  essentially  sending.

 I will now remove this QT-GUI frequency sink. Now in order to  go to passband and
come back to baseband we will  use the same procedure.  We will  first   multiply this
voltage  controlled  oscillator  by an  fc  valued signal  carrier  meaning  a  carrier   whose
frequency is fc. Then again multiply it by a similar carrier and we will not use  a sinus-sin
analog because we are only doing real signaling. So there is only I and no Q and we will
try  to  recover  the  information.

 Let us go about this in the exact same way  that we have been doing it. So, control F for
command F, signal source, we will double  click the signal source, make it  float and
make the frequency fc. Of course, we need  to declare a variable called fc. So, control F
for command F and say variable, grab the  variable over here, call it fc and make it 8000
hertz as we have been doing so far. Next  we say multiply, so control F for command F,
multiply,  get the multiplication block,  double click it, convert it  to float and we will
multiply  the  output  of  our  voltage  controlled   oscillator  with  this  signal  source.

 Let us also change the amplitude of the signal source  to root 2, so 1.414 and this will



become our modulated passband signal. Let us just copy  this time sink by doing clicking
on it say control C or command C and go to C command  V visualize this. Visualizing
this clearly shows that the carrier is modulated and if  we stop this and view it, we will
see that sometimes there are close peaks, sometimes  there are far off peaks indicating
that the frequency is slightly changed. So, therefore,  what you will end up having is fc
and affected by 1 kilohertz  and fc affected  by 2 kilohertz.   Therefore,  8 kilohertz  is
effectively  going  to  become  7  or  to  9  or  6  to  10  kilohertz.

  This is something which you can confirm by looking at the frequency domain waveform
for  this. Let us now demodulate this or rather bring this down convert this waveform to
the  baseband. Let us remove this QT-GUI time sink. We will duplicate this signal source
by doing  control C and control V. We will again duplicate this multiplier control C,
control  V  and  grab   this  multiplier  over  here.

 We will multiply this signal with the output of the signal  source and we will also add a
filter to remove the components near 2 fc. So, control F or  command F, low pass filter,
grab the low pass filter, double click it. As always we will  add a low frequency to fc and
transition  will  make  it  a  1000  hertz.

 We will also make it  float to float. We will connect it over here. Now, we need a delay.
So, let us again do  the same thing. I am going to delete this. I am going to do control F or
command F, grab  delay and in this case I am not adding a range. I am just going to hard
code  the  delay   as  75,  connect  the  throttle  to  the  input,  connect  this  to  the  output.

 Finally, increase  the number of inputs over here and connect this output over here. This
was a mistake,  apologies. This output should go here. Now, if you visualize the output,
you can clearly  see that the baseband waveform has been recovered that is the red one
and is reasonably close  to the original waveform indicating that we have been able to
recover the signal carefully.  You will not see significant aberrations in this particular
situation although they are  there, but the frequency spectral  of your occupation does
correspond  to  a  rectangular   pulse  in  this  case  as  well.

 So, in this way you can put together a frequency shift keyed  waveform. If you want, you
can expand the random source and this  table to have more  frequencies as well.  For
example, if we make this 4 and if we make this 1, 2, 3, 4, 5,  6, 3 and 4, you will now get
4 frequencies. You can see that there are now a multitude  of frequencies and you can
analyze and find out that these are 1 kHz, 2 kHz, 3 kHz and  4 kHz. If you look at the
frequency  spectrum,  you  will  see  something  very  similar.   In  this  lecture,  we  have
carefully gone through both quadrature amplitude modulation and frequency  shift keying
as you would have observed both in the baseband as well as the passband waveforms.



  In case of quadrature amplitude modulation,  you are able to see both the amplitude
changes  as well as the phase changes. In the case of FSK or frequency shift keying, you
have  seen that within a particular symbol block, just estimating the frequency is able to
convey  information and in this case, you are essentially using frequency variations in
order  to  convey  information.  Of  course,  you can  extend  this  to  say  amplitude  plus
frequency shift keying  as well and many such variations, all of which are used and which
have their own advantages  and disadvantages. One major limitation that we encountered
in our past few lectures is  that the use of the rectangular signal results in those ringing
effects  primarily because  it  is not band limited.  In practice,  having a band unlimited
pulse 

gTX (t)

is  not  practically   feasible  because  of  the  fact  that  you  have  spectrum  restrictions.

  So, in the next few lectures, we will explore ways by which you can get inter-symbol
interference  free communication that is how we can recover these symbols while not
using a rectangular  waveform and being within the spectral constraints that are imposed
upon us. Thank you.


