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Now let us carry this argument to convolution.
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So suppose we take the convolution of two sequences, , which without a loss of𝑥
1
[𝑛]

generality has non-zero samples only between 0 and , and , which has non-zero𝑁
1

− 1 𝑥
2
[𝑛]

samples only between 0 and . In other words the so-called “length” of the sequence𝑁
2

− 1

is and the so-called length of the sequence is . Now the question is what𝑥
1
[𝑛] 𝑁

1
𝑥

2
[𝑛] 𝑁

2

happens when you convolve these, what length would it have? Let us see.
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When we convolve the two sequences, we would have 0 to samples of , and the𝑁
1

− 1 𝑥
1

sequence is moved around on this to find the result of the convolution. So has𝑥
2

𝑥
2

𝑁
2

samples which move, and the movement begins with the sample (at the rightmost end𝑥
2
[0]

of the sequence due to the flipping of the sequence) aligned with the sample (the𝑥
1
[0]

leftmost sample in the sequence). You see the output starts only when the sample 𝑥
2
[0]

reaches and the output ends when the sample reaches the sample𝑥
1
[0] 𝑥

2
[𝑁

2
− 1]

.𝑥
1
[𝑁

1
− 1]

In other words, the output would be non-zero only in the range 0 to . You see,𝑁
1

+ 𝑁
2

− 2

for the point to reach the point , and for the sequence to move all the way upto𝑥
2
[0] 𝑥

1
[0] 𝑥

2

the point when the point reaches , you have essentially gone over𝑥
2
[𝑁

2
− 1] 𝑥

1
[𝑁

1
− 1]

samples, that is samples. The movement has been(𝑁
1

− 1) + (𝑁
2

− 1) 𝑁
1

+ 𝑁
2

− 2

from 0 to . In fact in general I leave this to you as an exercise.𝑁
1

+ 𝑁
2

− 2
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Suppose occupies the range to , meaning that the non-zero samples are only in𝑥
1
[𝑛] 𝑁

1
𝑁

2

this range, and similarly occupies going from to . Here it should be noted that𝑥
2
[𝑛] 𝑛 𝑁

3
𝑁

4

when we say occupies, or when we are saying that the non-zero samples are between these
numbers we are not saying that all those samples need to be non-zero. We are saying that if
there are any non-zero samples they are confined to between and for and between𝑁

1
𝑁

2
𝑥

1

and for . Some of the samples in between could also be 0.𝑁
3

𝑁
4

𝑥
2
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Then if convolved with , then the result occupies to . This is I𝑥
1

𝑥
2

𝑥
1

* 𝑥
2

𝑁
1

+ 𝑁
3

𝑁
2

+ 𝑁
4

will leave it to you as an exercise to prove. It is simple, just write down the convolution
expression and you would see it in a fairly straightforward way, or you could do it
graphically. In fact I would encourage you to use both approaches, the algebraic approach and
the graphical approach as well and reaffirm the same result.
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Therefore in a convolution of two sequences with and samples respectively, we have a𝑁
1

𝑁
2

resultant sequence with samples. The convolution occupies a length of𝑁
1

+ 𝑁
2

− 1

samples.𝑙𝑒𝑛𝑔𝑡ℎ(𝑥
1
) + 𝑙𝑒𝑛𝑔𝑡ℎ(𝑥

2
) − 1

And this gives us a hint as to how we should deal with convolution in the frequency domain
if you want to sample. For the sequence with samples, it is quite adequate to sample𝑥

1
[𝑛] 𝑁

1

the frequency domain for , i.e. with only samples. And similarly if we wish to𝑥
1

𝑋
1
(ω) 𝑁

1

avoid time-domain aliasing when only is involved, it is sufficient to take capital𝑥
2

𝑁
2

samples. But to find the convolution of and , you would want to multiply their𝑥
1

𝑥
2

discrete-time Fourier transforms and then take an inverse discrete-time Fourier transform.

If you wish to use that route, then it is not adequate to sample with only samples or𝑁
1

𝑁
2

samples. You need to sample with samples on all of them. That is very, very𝑁
1

+ 𝑁
2

− 1

important. Let us make a note of that.
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If we wish to carry out convolution by sampling the DTFT, we must take
samples in the DTFT. And this is true for all the three, the𝑙𝑒𝑛𝑔𝑡ℎ(𝑥

1
) + 𝑙𝑒𝑛𝑔𝑡ℎ(𝑥

2
) − 1

DTFT of , the DTFT of and the DTFT of . You need to work with these many𝑥
1

𝑥
2

𝑥
1

* 𝑥
2

samples.
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To take an example, suppose we had of length 3 and similarly for , also of length 3, then𝑥
1

𝑥
2

would be of length . So we would need to sample with a𝑥
1

* 𝑥
2

3 + 3 − 1 = 5 𝑋
1,2

(ω)

spacing of , not . We would need to take 5 samples of and and multiply2π
5

2π
3 𝑋

1
(ω) 𝑋

2
(ω)

the 5 samples, sample by sample. But if you do indeed take only 3 samples then what would
happen?
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Suppose we violate this, and take only 3 samples of and , what would happen? That is𝑋
1

𝑋
2

you try and use only 3 samples.

(Refer Slide Time: 10:23)

To convolve the two sequences, you would multiply their DTFTs. Let us call as𝑥
1

* 𝑥
2
[𝑛]

. So if you have only 3 samples of the DTFTs, and if you wish to get back what you𝑦[𝑛] 𝑦[𝑛]
are actually going to get is not shifted by every multiple of 5 samples, but shifted by𝑦 𝑦
every multiple of 3 samples.

So we are going to get:



𝑟=−∞

+∞

∑ 𝑦[𝑛 + 3𝑟]
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Now let us write down this convolution to understand it better. You see you have ,𝑥
1
[0] 𝑥

1
[1]

and , the 3 samples of , which acts as the “platform”, and you would have 3 samples𝑥
1
[2] 𝑥

1

of which move around this “platform”, thus acting like the train. So the first three samples𝑥
2

of the output are as follows:
𝑦[0] =  𝑥

1
[0]𝑥

2
[0]

𝑦[1] =  𝑥
1
[1]𝑥

2
[0] +  𝑥

1
[0]𝑥

2
[1]

𝑦[2] =  𝑥
1
[2]𝑥

2
[0] +  𝑥

1
[1]𝑥

2
[1] +  𝑥

1
[0]𝑥

2
[2]
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And as you continue, you can see that when you are calculating , then has reached𝑦[3] 𝑥
2
[0]

a zero sample. Hence the remaining samples can be calculated as follows:
𝑦[3] =  𝑥

1
[2]𝑥

2
[1] +  𝑥

1
[1]𝑥

2
[2]

𝑦[0] =  𝑥
1
[2]𝑥

2
[2]
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Now, when we carry out the time domain aliasing, what is going to happen? The sum

will look like this:
𝑟
∑ 𝑦[𝑛 + 3𝑟]

| |𝑦[0]   𝑦[1]   𝑦[2] 𝑦[3]   𝑦[4]
..... | |𝑦[3]   𝑦[4] 𝑦[0]   𝑦[1]

        | | 𝑦
~

[0]   𝑦
~

[1]   𝑦
~

[2]                   

At 0 you would have initially had just and then starting from 0 , , ,𝑦[0] 𝑦[0] 𝑦[1] 𝑦[2] 𝑦[3]
and , but you are going to shift this by every multiple of 3 and add them. So is also𝑦[4] 𝑦[0]
going to come aligned below of the original copy, followed by and so on. And this𝑦[3] 𝑦[1]
is also going to go backwards in steps of 3. So would also come below .𝑦[4] 𝑦[1]

And as expected this sum is going to be periodic with period 3. The sequence obtained by
taking the original sequence, shifting it by every multiple of 3 and adding the copies, is going
to be periodic with period 3. That can be easily shown by putting in place of in the𝑛 + 3 𝑛
sum, which gives you back the same sequence. So it is expected that this sequence is going to
be periodic with period 3. Hence we only need to consider the principal period of 3 here.

Let us call the samples in this period , and . We have an expression for each of𝑦
~

[0] 𝑦
~

[1] 𝑦
~

[2]
these samples. Let us write down these
expressions.
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𝑦
~

[0] =  𝑦[0] +  𝑦[3]
       =  𝑥

1
[0]𝑥

2
[0] +  𝑥

1
[2]𝑥

2
[1] +  𝑥

1
[1]𝑥

2
[2]

𝑦
~

[1] =  𝑦[1] +  𝑦[4]
       =  𝑥

1
[0]𝑥

2
[1] +  𝑥

1
[2]𝑥

2
[2] +  𝑥

1
[1]𝑥

2
[0]

𝑦
~

[2] =  𝑦[2]
       =  𝑥

1
[0]𝑥

2
[2] +  𝑥

1
[2]𝑥

2
[0] +  𝑥

1
[1]𝑥

2
[1]

When writing each sample of , we have taken care to write each product term in the sum in𝑦
~

such a way that , and appear in the same order for all three samples of𝑥
1
[0] 𝑥

1
[2] 𝑥

1
[1] 𝑦

~
.

You will notice that it is different samples that are associated with these every time. In fact, to
understand what is happening better, let us write down the samples not on a straight line but
on the surface of a circle.
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Let us fix the outer circle with the samples of . So going in counterclockwise order, we𝑥
1

have , and . And we take an inner circle and put on it the samples of . Let𝑥
1
[0] 𝑥

1
[1] 𝑥

1
[2] 𝑥[2]

us put the samples the way they associate for . So associates with , so let us𝑦
~

[0] 𝑥
1
[0] 𝑥

2
[0]

put next to . Similarly associates with so let us put next to𝑥
2
[0] 𝑥

1
[0] 𝑥

1
[2] 𝑥

2
[1] 𝑥

2
[1] 𝑥

1
[2]

. Finally, associates with , so let us put next to .𝑥
1
[1] 𝑥

2
[2] 𝑥

2
[2] 𝑥

1
[1]

When computing the circular convolution, the inner circle remains fixed, so we call it the
rotor and the outer circle which remains fixed, we call it the stator, taking a cue from the
terminology for machines.

For , now gets associated . So there is a movement (i.e. rotation of the rotor)𝑦
~

[1] 𝑥
1
[0] 𝑥

2
[1]

of one step (in the clockwise direction). Here gets associated with , gets𝑥
1
[0] 𝑥

2
[1] 𝑥

1
[1]

associated with and gets associated with .𝑥
2
[0] 𝑥

1
[2] 𝑥

2
[2]

When we come to , is associated with . Here the rotor is rotated by 2 steps,𝑦
~

[2] 𝑥
1
[0] 𝑥

2
[2]

and the associations are made after rotation of the rotor by 2 steps (in the clockwise
direction).

So it is as if we were convolving not on a straight line. It is as if we had a train and
passengers in and out of the train not on a straight platform but on a circular platform. And
therefore what we have got here is what we call circular convolution.
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It is called the circular convolution because it is as if you were doing convolution with the
sequences put on the surface of a circle, not on a straight line. And of course as expected
circular convolution is bound to be periodic.
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Now I leave it to you as an exercise to work out what happens in case you took 4 samples and
not 5. So equal to 4, 5, 6 samples, work them out for all the 3 cases.𝑁



During our previous work, we took 4, 5 and 6 samples respectively of the sequences and𝑥
1

and then worked in the frequency domain. Now in all this we are assuming that we have a𝑥
2

way to go back after sampling, but we need to complete that one little step. How do we go
back? After we have sampled the frequency axis how do we go back to the original time
domain expression?

We can do that and obtain the correct sequence only if we have no time-domain aliasing. If
you have time-domain aliasing, whatever we do is going to give us the aliased version of the
sequence. Either way we must have a way of going back after sampling. To do that of course
we can exploit or invoke the idea of vectors.
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We must now put down some terminology. The samples of , taken as:𝑁 𝑋(ω)
, ,𝑋(ω)|

ω= 2π
𝑁 𝑘

𝑘 = 0,..., 𝑁 − 1

these samples are called the discrete Fourier transform, or DFT of the sequence . Now𝑁 𝑥[𝑛]
of course we should be more precise. We should call it the -point discrete Fourier transform𝑁
because we could have taken less or more samples too. Here we are assuming the sequence

has at most samples.𝑥[𝑛] 𝑁

You could possibly take a discrete Fourier transform as well, but then there will be
time-domain aliasing, or you may be taking more samples than required. If you take more
samples than required, there is no problem. So even if a sequence has only non-zero𝑁
samples, you could be very well taking more than samples in the frequency domain.𝑁

And as you can see, you need to do it when you are trying to convolve two sequences. When
you convolve two sequences you need to take more than the number of samples in either of
the sequences. It is not unusual to do that.
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Now if you have a discrete Fourier transform you need to have an inverse transform. We shall
now use to denote , . You have such samples. So it is as𝑋[𝑘] 𝑋(ω)|

ω= 2π
𝑁 𝑘

𝑘 = 0,..., 𝑁 − 1 𝑁

if you had dimensions along which you are trying to represent the original sequence.𝑁

So you have gone from samples in one domain to samples in a different domain, and𝑁 𝑁
each of these samples in the frequency domain corresponds to a vector, a vector created by a
rotating complex number rotating with the corresponding frequency .2π

𝑁 𝑘

So in the next lecture we shall see how we would reconstruct the original sequence or at least
try to reconstruct the original sequence by using this idea of vectors. Not only that, we will
also see how to do this efficiently. You see all this is useful if it is going to make our
computation efficient. And therefore after having established that we can reconstruct we also
need to see if we are going to get a computational advantage by discretization, which we shall
also see in the next lecture. Thank you.


