
Digital Signal Processing & Its Applications
Professor Vikram M. Gadre

Department of Electrical Engineering
Indian Institute of Technology Bombay

Lecture 31A
Intro to Signal Flow Graph and Direct Forms-1 & 2

A warm welcome to the 31 lecture on the subject of Digital Signal Processing and its

Applications. We are now going to embark on a very important theme related to discrete systems

after having completed a fairly extensive discussion on the design of finite impulse response

filters using the window approach, a window based filter design method.

We now need to work out how we can realize systems. I in fact, we had just hinted at the

approach to realisation in the past, but now we need to treat that subject with some degree of

depth and detail. So, in fact, let us put before ourselves the specific problem that we need to

discuss.

(Refer Slide Time: 01:28)

You see we have before us in realization a causal rational system and the system function takes

the following form, . So, we have a numerator and a𝐻(𝑧) = {
𝑚 = 0

𝑀

∑ 𝑏
𝑚

 𝑧−𝑚}/{1 −
𝑙 = 1

𝑁

∑ 𝑎
𝑙
 𝑧−𝑙}

denominator polynomial and our objective is to realize this system.



(Refer Slide Time: 02:22)

Now, the approach to realization is essentially by using what are called signal flow graphs and

we need first to define a signal flow graph in a slightly more formal way than we have done

before. A signal flow graph is a collection of nodes and directed edges. So, you know even

among nodes we have different kinds of nodes, we have source nodes, we have intermediate

nodes and we have sink nodes.

So, for example, nodes from which all the edges go outwards that means nodes which provide to

other nodes only are called source nodes, nodes which have edges coming in as also going out

are called intermediate nodes. So, neither source nor sink they have some edges which come in

which bring material to the node and some edges which carry material away from the node.

Subsequently, we have what are called sink nodes.

Sink nodes are nodes to which edges come but from which no edges leave and in fact the word

source and sink are fairly suggestive, source means that which gives, sink means that which

consumes, intermediate is neither source nor sink. Now, it is best to understand this by taking an

example. So, let us take an example of a signal flow graph in which we have all the three kinds

of nodes, source nodes, intermediate nodes and sink nodes.



(Refer Slide Time: 04:27)

So, we have this signal flow graph that we have constructed here and what we have done is to

construct 1, 2, 3, 4, 5, 6, 7 nodes and we have several edges we have this edge this this one all

these. For each edge we have given a multiplier on the edge you know we have the edges as we

remember, an edge carries a multiplier on it.

So, good way to understand nodes and edges is that nodes are like stations at which material is

deposited or from which material is taken edges are like trucks, which carry away material from

one station to the other station. And in the truck there is some machinery which does processing

on the material which is being carried.

Now, you must think of every truck that carries material away from a node as carrying the same

material. So, it is not as if there are more trucks, the material is divided among the trucks, no

there is no conservation law here. Whatever material is available at a station is all carried by all

the trucks that leave that station.

However, as far as material being created at a station is concerned, all the edges which come in

deposit their respective material all the trucks, if you please, which come in to a station deposit

their material on the station and what material is seen at the station is the linear combination is

the sum of all this material that is so deposited.



So, the rules are different for deposit and takeaway for deposit, all the material that is brought is

added to form the material at that nodes for take away the material is taken away the same by all

the trucks that leave as I want to repeat once again, there is no conservation law here. Anyway,

so for example, here if you look at this signal flow graph N1 and N2 are examples of what are

called source nodes.

So, these are source nodes here N3, N4 and N5 are examples of what are called intermediate nodes

and N6 and N7 are examples of what are called sink nodes. Now, to take an example of deposit

and take away all the edges a1, a2 and a3 carry away the same material from the edge N1 that is

whatever material is being provided by node N1 is carried away equally well by these three

edges.

This edge multiplies that material by a1 this one multiplies the material by a2 and this multiplies

the material by a3 and of course, at N3 you have a1 times this material being deposited at N6 you

have a7 times this material a2 times this material and a8 times this material coming together and

being added and deposited.

So, for example, N6 is an example of a sink node here. So, it has no edges going outwards and

N3, N4, N5 as I said have edges coming inward and outward if you looked at N4 for example, the

material that you have at N4 is a3 times the material that you have it N1 plus a4 times the material

that you have it N2 being added together and deposited to form the material at the station N4.

So, much so then for signal flow graphs has a mechanism of representation of transmission of

sequences signals or data. You see, you must remember, the signal flow graph can hold on it,

either a single number or Z transform or any other entity on which an operation which the edge is

capable of doing is possible.

So, hear in this context, we have only single numbers and we will use signal flow graphs later

with single numbers or unique number data for realizing discrete Fourier transforms efficiently.

But we will make use of Z transforms sitting on the nodes or at the stations to realize discrete

systems, as we will do over the next few lectures.



(Refer Slide Time: 10:29)

So, you see, let us then come to a specific realization that we want to do, namely the rational

causal not necessarily stable though, rational causal system that we written down a few minutes

ago. Let us, first write down a difference equation, linear constant coefficient difference equation

that realizes that rational causal system.

So, there the output y of n is related to the input, I mean the input accent xn and it is past samples

and also the past samples of the output. So, y of n is a combination of all the input samples from

the most recent one to the sample capital M away a proper linear combination which we have

represented by script B here.

And plus a linear combination of the past capital N outputs starting from the output one sample

away. So, there are N terms here and capital N terms here, and capital M terms here. This is the

difference equation that describes that rational causal system that we had in the very beginning of

this lecture.



(Refer Slide Time: 11:57)

Now, we want to draw a realization of that system by using adders, multipliers and delays. So,

you see, what we will do is to realize the feedback part first or the feed forward part I am sorry.

So, we will first realize this part, we will take the sum of the input samples and put that into a

structure where it is very easy to see what that structure says.

It essentially says take b0 times the input, delay the input by 1 take b1 times that important and so

on take M such delays in cascade and you get x[n] here you get x[n-1] here and x[n-M] here,

take b0 times this plus b1 times this plus bm-1 times just the last penultimate one and finally bM

times x[n-M].



And add them two at a time, we have agreed that we will like to make use of two input adders to

be uniform in our structure. We do not want to of course, nothing stops us from using adders

which have more than two inputs but it is always desirable to use the same kind of unit repeated

again and again in a realization.

So, we prefer to make use of two input adders instead of using arbitrary number of inputs at each

adder. So, with that, then we take two at a time and add them. So, we have bm times this plus

bm-1 times this being added in the first node and you can continue to add one at a time until you

reach b0 times x[n] here.

And together all this gives you this part of the sum here bm x[n-m] sum for small m going from 0

to capital M this part is obtained at this node here. Now, for the other part of the output, let us

assume that we have the output somewhere here generated we operate capital N delays on that

output. So, n-1, n-2 up to n-N, we operate capital N delays on this output to give you y[n] y[n-1]

all the way up to y[n-N] here.

Now, as this equation suggests you need to multiply y[n-1] by a1 y[n-2] by a2 and so on when

you reach y[n-N] being multiplied by a capital N and therefore, you have these multipliers a1 up

to a N-1 aN being operated on these delayed versions of the output and then we sum them two at

a time.

So, we sum this and we sum this we get the first sum, keep on doing this until you take the factor

a1 times y[n-1] and finally what you generate here is the expression script a that you have here.

So, we have script B generated this script A being generated here. And if you add these two, it

generates y[n] for you.

So, we are in good shape, we have generated y[n] back again by using what is called a feed

forward section and a feedback section, this is the feedback section and this is the feed forward

section here.



(Refer Slide Time: 16:15)

Now, how many elements of different kinds have used in this realization, it is very clear that we

used ‘N+M’ delay elements ‘N+M+1’ multipliers and ‘N-1’ adders in the feedback path and M

adders in the feed forward path and then 1 adder overall to add the feedback and the feed forward

combinations resulting in ‘N-1+M+1’ adders. And these are assumed to be two input adders,

remember.

Let us, just quickly convince ourselves on this you have M capital M delays here capital N

delays there. So, ‘N+M’ delays you have capital M, adders to input adders here, because you

have all the way from b0 to bM, you have capital ‘N-1’ two input adders here and you have one



more here. And of course, as far as multipliers go you have M+1 there and capital N here. So,

that is an explanation for the numbers that we put down here.

(Refer Slide Time: 18:07)

Now, we make an observation which will help us actually reduce the amount of hardware or

software that we are using in realizing the system. In fact, we noticed that what we have done is

to decompose the system function into two parts a so called feedback part and so called feed

forward part and we operated the feed forward part first and then the feedback part because we

have written H[z] in this following cascade decomposition format.

The numerator has been put first and the denominator has been{1/1 −
𝑙 = 1

𝑁

∑ 𝑎
𝑒
 𝑧−𝑙}{

𝑚 = 0

𝑀

∑ 𝑏
𝑚

 𝑧−𝑚}

put next and we may treat H(z) as a product of the numerator system function and the

denominator system function. Obviously, this is a product of two functions of Z and that product

is interchangeable multiplication in the Z domain is also of course commutative. So, we could

put this feedback structure first and the feed forward structure next.



(Refer Slide Time: 19:11)

And let us indeed do that in the architecture here. So, if you had only the feedback structure, then

you would have a structure like this realizing it in direct form 1, you would first put capital N

delays, you would multiply the first output of the delay the output of the first delay by a1 and so

on up to a capital N.

You add two at a time and then finally complete the sum with the input to produce the output

here up to here. So, this realizes the numerator so and sorry the denominator, this realizes the

denominator this realizes, HA (z) if you recall, HA (z) is this so here you have a numerator of 1



and a denominator given by this. And if you use the structure that we just described, this is the

realization with that structure.

Together with that you have an HB(z) also being realized, an HB(z) is realized in this way, you

would simply put a cascade of capital M delays, multiply subsequently by b0, b1 up to bM and

then add 2 at a time to produce the output. And this is indeed the final output here. Now, when

we put the system function in this form, something becomes evident immediately.

What you have here? Now let us use the rules of signal flow graphs. So, you have a station here,

what is at this station is essentially what is this station carried with a multiplier of one. So what is

located this station is the same as what is located at the station, there is no difference. These are

only arrows going outwards, if you notice.

And therefore, what we have here is this delayed by one sample, what we have here is this

delayed by one sample and if you look at it, these in sequence must carry the same material to

this material must be the same, this material must be the same. Similarly, if you go step by step,

one, one delay downwards, the corresponding pair of nodes, the corresponding pair of stations

must carry the same material. So, we are in fact wasting stations here and delays as well.

You might as well have picked because each station has the capability to provide as many

outgoing edges as you desire, so there is really no need to keep two stations carrying the same

material all the time. And therefore, all that we need to do is to fuse this train of delays and this

train of delays. And you would do that by looking at which is larger capital N or capital M,

putting a stream of delays with the maximum of capital N and capital M, delays on that stream

and tapping off the outputs of the delays one after the other.



(Refer Slide Time: 22:52)

And that leads to a structure like this. Note carefully what is happening here, you have the

middle node, as you did here, you have this middle node, the middle node, these are really the

same is placed here, you delete these one sample at a time. And you have a stream of delays with

maximum of n and m delays in the stream, you might taken a1 times what comes out to the first

delay and fed it backwards and you have taken b1 times what comes out to the first delay and fed

it forward.

And you keeping on doing this a1 b1 here a2 b2 next and so on. And except at the top branch you

would need to multiply this by b0. And the rest of it is of course the same does not change. Now



you see obviously, here we have kept the number of multipliers the same, there is no change the

number of multipliers.

In fact, there is no real change in the number of adders as well. What has changed is the number

of delays. But yes, quite a bit from ‘N+M’ delays the maximum of N and M delays and

therefore, this architecture is definitely more economical in terms of hardware or software

requirement. This is called direct form two realization this realization is called direct form two.

(Refer Slide Time: 24:29)



As against the earlier realization, here which we call direct form one so just to flesh both before

you this is direct form one where you have all these additional delays and this is direct form two

where you have economize on the number of delays.

(Refer Slide Time: 24:51)

Now let us, take an example. In fact, let us put down an example where you have ‘M = 2’ and

N=3 and draw the direct form two architecture. So, you can see very clearly that you would have

a node here you would have so, you see if ‘M = 2’ and ‘N = 3’ than their maximum is 3 and

therefore you need 3 delays in cascade in a stream you tap off a1 times this a2 times this and a3

times this and add them two at a time and finally, add the input to produce the intermediate node.

Subsequently, we multiply this by b0 this by b1 and this by b2 and add them again two at a time

multiply this by b0 and of course, so, here you have y[n] being generated by the feed forward

path. So, feed forward path is here, the feedback path is here. And let us give names to each of

these nodes in turn, V1, V2, V3, V4, V0 here we begin from this node V5, V6, V7, V8, V9 and finally

V10 and then we have the input node X and the output node Y.


