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Introduction to Other Window Shapes and Exploring the FIR filter

So, warm welcome to the 28th lecture on the subject of digital signal processing and its

applications. We have commenced the discussion of FIR filter design in the previous lecture.

And we had looked at the simplest approach to FIR filter design, taking a cue from how we

represented irrational numbers in finite precision.

The easy way to do it is simply to truncate up to a certain level of accuracy. So, for example, we

agreed that we would simply allow a certain number of impulse response samples to be retained.

And naturally the choice would be, if you were given how many samples you could retain, then

you would choose, in some sense, the most significant of the samples, the samples that made the

most difference.

And intuitively the samples with maximum magnitude are expected to make the most difference.

And typically, in most of the responses that we noticed, the most important samples lie around N

equal to 0. And therefore, we chose a certain number of samples placed around N equal to 0,

depending on what length we are permitted to make the impulse response of the finite impulse

response filter. Now, we were trying to understand the consequence of this on the frequency

response.
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And we had noted that if we considered an ideal impulse response, , and retained this forℎ
𝑖𝑑𝑒𝑎𝑙

[𝑛]

, this is then equivalent to or the impulse response of the FIR filter, given− 𝑁 ≤ 𝑛 ≤ 𝑁 ℎ
𝐹𝐼𝑅

[𝑛]

by , where v[n] is a window function. And of course, in the specific case whereℎ
𝑖𝑑𝑒𝑎𝑙

[𝑛] * 𝑣[𝑛]

we are retaining some samples and throwing out the rest, this window function is essentially just

a constant in that interval.
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So, in this case, v[n] is 1 for and 0 else, for . Now, if we sketch the− 𝑁 ≤ 𝑛 ≤ 𝑁 𝑛| | > 𝑁

sequence, which is easier to do. This is the point minus N, this is point plus N, it is 0 else. And if

we put around this sequence, what we call an envelope, like this, an envelope, which when

sampled at the integers results in the window.

Then this envelope is rectangular. It is essentially a rectangular pulse. And therefore, we call this

a rectangular window. So far, we have not seen any other window, but we can of course,

conceive of other windows by putting other shapes in the same place.
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So, for example, between minus N and plus N, we could put a triangle, if we desire or we would

put a cycle of a cosinusoidal, a cos wave, you know, you could put the cos wave displaced by

some amplitude. And therefore, you could have the cosine function go this way.

And of course, we could conceive of many other windows like this. These are all examples of

shapes that one can put between minus N and plus N. And then sample, each such shape, when it

is put between minus N and plus N, is then sampled at every integer. So Vn could be essentially

samples of different shapes, put between minus N and plus N taken at the integers.

Naturally, as capital N grows, the number of samples increases. So, in the previous lecture,

although we had introduced the idea of a window, we had not seen why we should write a

general sequence Vn, now we know. We could have shapes other than rectangular. So, what we

had seen last time was the rectangular window. We could have other shapes.

In fact, if you look at the triangular shape, it is very easy to see that the triangular shape can be

obtained by conforming the rectangular shape with itself.
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So, if you have a rectangular shape between minus N by 2 and plus by 2, now, since this is an

envelope, since it is a continuous function, let us say of the variable t, let us call it ,𝑉
𝐶
(𝑡) * 𝑉

𝐶
(𝑡)

would give us the triangular window. So, we can see there are relationships between the

windows as well.

And that will also help us obtain the discrete time fourier transform in case we decided to obtain

it for the triangular window appropriately sampled. Anyway, whatever it will be, we will agree

that you know, all these windows, once your sampled that envelope at each of the integers, you

get a sequence. That sequence is called v[n]. Let us write down what v[n] is.
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v[n] is this continuous window function, window envelope, if you like to call it that, sampled.

So, of course, we have called the envelop sampled at t = N, the integer is N. And of𝑉
𝐶
(𝑡)

course, v[n] has a discrete time Fourier transform. Yes, please, there is a question. So, the

question is if the window be other than rectangular, would it distort the original impulse

response?

Well, indeed, it would change the impulse response samples at the points at which they are

retained, but that change might, as we will see shortly, be for the better. So, it would of course

change the samples, but our ultimate objective is not so much to retain the samples as to get a

frequency response which is as close to the ideal as possible.

And therefore, what we need to see is what effect does the choice of window have on the

frequency response, not so much the raw samples. Anyway, so you see one thing is very clear.
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Vc(t) needs to be an even function of t. This is because typically impulse responses of ideal

filters are typically even or odds in n. So, if we take all the four piecewise constant ideal filters,

they are all even in n. We shall see some other non-piecewise, constant responses, which are odd

in n, but either even or odd symmetry is, if the impulse response is even, we call it symmetric

around n equal to 0. And if the impulse response is odd, we call it anti-symmetric.

So, typically we find that impulsive responses are symmetric or anti-symmetric about the center.

And if we wish to preserve the symmetry, anti-symmetry, as it is, so symmetry should be

preserved the symmetry and anti-symmetry as anti-symmetry. Then the window function needs

to be even, that is not too difficult to see.

Because of the symmetric, of course, multiplying by Vn will preserve the symmetry, but if it is

anti-symmetric, it will still preserve the anti-symmetry because corresponding points on the

positive and negative side of n will be multiplied by the same number. So, anyway, this

preservation, now why is this preservation of symmetry important?

We shall see it has something very strongly to do with the phase response. In fact, we can see

that right away, and this also tells us why we are in the first place looking at FIR filters.
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Why are we looking at, why are we preserving symmetry or anti-symmetry? And the answer is,

to preserve what is called the linear phase or pseudo-linear phase property. Let us assume an FIR

filter has a symmetric response, that means its response is even in n.
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Let be even in N extending from n equal to minus N to plus N. The frequency responseℎ
𝐹𝐼𝑅

[𝑛]

or , as you please to call it, would be . Now, of course, we areℎ
𝐹𝐼𝑅

[ω] 𝑒𝑗ω

𝑛=−𝑁

+𝑁

∑ ℎ
𝐹𝐼𝑅

[𝑛]𝑒−𝑗ω𝑛



assuming evenness with the underlying assumption of the impulse response being real as it is for

all the ideal filters. But if it is not real, then we will assume that this conjugate symmetry.
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So, we will say, in general that is . For real , it is simply even. Now, letℎ
𝐹𝐼𝑅

[− 𝑛] ℎ
𝐹𝐼𝑅

[𝑛] ℎ
𝐹𝐼𝑅

[𝑛]

us look at t frequency response from the point of view of its amplitude and phase part. So,

, has a DTFT given by minus, let me expand it now, plusℎ
𝐹𝐼𝑅

[ω] ℎ
𝐹𝐼𝑅

[𝑛] ℎ
𝐹𝐼𝑅

𝑒𝑗ω𝑁



, and so on, plus and then you have, plusℎ
𝐹𝐼𝑅

[− 𝑁 + 1]𝑒𝑗ω(𝑁−1) ℎ
𝐹𝐼𝑅

[0] ℎ
𝐹𝐼𝑅

[𝑁 − 1]𝑒−𝑗ω(𝑁−1)

finally .ℎ
𝐹𝐼𝑅

[𝑁]𝑒−𝑗ω𝑁

Now, expanded showing some typical terms. And what we do is to combine corresponding terms

now on the negative and positive side. For the moment, let us assume that this is real to make

matters simple. Or actually, we do not really need to, let us take in general that they are

conjugate symmetric. So, in that case, each of the corresponding negative samples is going to be

the complex conjugate of the positive sample.
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And therefore, we are going to have a combination of N terms of the following nature. This can

be combined as because associated with minus,ℎ
𝐹𝐼𝑅

[0] +
𝑛=1

𝑁

∑ (ℎ
𝐹𝐼𝑅

[𝑛]𝑒−𝑗ω𝑛 + ℎ
𝐹𝐼𝑅

[𝑛]𝑒−𝑗ω𝑛)

you see, is .ℎ
𝐹𝐼𝑅

[− 𝑛] ℎ
𝐹𝐼𝑅

[𝑛]

And the corresponding exponential term associated with it is , that can be written as .𝑒𝑗ω𝑛 𝑒−𝑗ω𝑛

We have capital N and such terms here. Now, clearly, this is the complex conjugate of this. So,

this term in its entirety is the complex conjugate of this. And therefore, their sum is 2 times the

real part of this.



That is easy to see, and that can be written as . And of course,ℎ
𝐹𝐼𝑅

[0] +
𝑛=1

𝑁

∑ 2𝑅𝑒{ℎ
𝐹𝐼𝑅

[𝑛]𝑒−𝑗ω𝑛}

if , then we have a very simple expression. We have this becomesℎ
𝐹𝐼𝑅

[𝑛]

.ℎ
𝐹𝐼𝑅

[0] +
𝑛=1

𝑁

∑ 2ℎ
𝐹𝐼𝑅

[𝑛]𝑐𝑜𝑠(ω𝑛)

what is noteworthy anyway, whether h FIR n is real or not, is that this impulse, this frequency

response is real. You know, the either case, in any case, the DTFT is real. This is noteworthy.

Now, when the DTFT is real, its phase can either be 0 or . So, this quantity, this expression thatπ

we have here, or this DTFT itself, if you would like to call it that is also called the pseudo

magnitude.
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This DTFT is like a magnitude, except that it can be positive or negative. The phase is either 0 or

but nothing else. And therefore, it is called a pseudo magnitude. If it happens to be positive allπ

over, then it becomes a magnitude. The magnitude of the DTFT is itself.

Now, it should be noted that when you thus truncate, so when you have taken the ideal impulse

response and multiply it by a window function to retain samples between minus N and plus N,

thus the corresponding FIR filter is non-causal. Then we have a problem or we think we have a

problem there.
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You know, if as it stands, the FIR filter is non-causal. But it is very easy to make it causal. All

that you need to do is to delay the output by N samples. We can easily make it causal by an N

sample delay. And N sample delay is very easy to understand in the frequency domain. All that

N sample delay does is to impose an additional linear phase.
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The other way of looking at it is, you are saying, you have the original FIR filter, you subject it

to an N sample delay. That means . And this introduces mode change in𝑦[𝑛] = 𝑥[𝑛 − 𝑁]

magnitude. This is a linear shift in variance system, very clearly and it is very easy to find its



frequency response. The phase response simply becomes . In fact, you can write down its− ω𝑛

DTFT.

The frequency response, DTFT of impulse response or frequency response is the . So, it has𝑒−𝑗ω𝑛

a magnitude of 1 and a phase of and therefore all that this does is to add a linear phase.− ω𝑛

Now, of course, this is not very difficult to understand intuitively. If your delay the output,

obviously the nature of the output is unchanged, it is just going to come later.

And that coming later is reflected in the phase. So, now you also see what happens when you

have a phase response. The role played by a phase response is essentially shifting in time. If all

components are shifted by the same amount in time, then the phase response is transparent. All

that you will see is that your output comes later, but if some components come earlier than

others, then you have a problem.

And that is what you mean by non-linear phase response. If the phase response is non- linear,

then some frequency components come before the others. And then we have a problem then the

fundamental nature of the signal changes. So, obviously the desirable situation is to have as

linear as possible, a phased response. And in fact, even after thus making the FIR filter causal,

the phase response of the FIR filter is almost exactly linear.

The only little bit of non-linearity is caused by the fact that the original DTFT or the original

frequency response could be either positive or negative. So, it is a pseudo magnitude multiplies

by a linear phase. And that pseudo magnitude is a magnitude, then you have exact linear phase.

If the pseudo magnitude becomes negative at places, then you have a problem that the phase

becomes 0 plus a linear phase at some places.

And pi plus a linear phase at other places, that is much better than having non-linear phase. This

is clearly the reason why, FIR filters have a great advantage over IIR filters. Unfortunately, it is

impossible to design infinite impulse response filters with linear phase. In fact, I put this as a

challenge before you.
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Prove that IIR rational filters if causal, cannot have linear phase. So, the precludes a good phase

response and we saw that in the Butterworth and the Chebyshev filters. There was a trade-off.

When you went from the Butterworth to Chebyshev, you would not do any worse in terms of

resource as far as meeting magnitude specifications were concerned.

But when it comes to meeting phase response, which we have not specified at all, Chebyshev

filter cannot do better than the Butterworth filter. So, although the Chebyshev filter does not do

worse than the Butterworth filter or might even do better in terms of magnitude specifications.

That means it conserves on resources to meet magnitude specifications. It unfortunately degrades

the phase response. And in fact, as you go from Chebyshev to Elliptic, that is even more true,

though we have not talked about elliptic filter design.

So, this whole problem manifests itself in IIR filters and in FIR filters, we obliterate it entirely,

we do not have a problem of phase response at all. We can get exactly linear phase. And of

course, I told you right at the beginning, when we started the engineering part of this course,

nothing comes for free in engineering systems.

What we will do is, in terms of, I mean what you gain in terms of phase response here, you lose

them in terms of resource. Ultimately, a lot of engineering systems come down to the simple

maxim, invest more gain more. I can scarcely think they are very, I mean, it requires a lot of

ingenuity, it requires a lot of deep understanding to violate this principle to some extent, of

course, we do to an extent and places.



But by and large, it is always a game of investing more and gaining more or investing less and

then also losing something. Of course, the game also pertains to what you can lose, but you

know, sometimes you do not mind losing something and then you can gain something else. And

that is also a gain then, what are you willing to lose?

Anyway, here, if you wish to gain in terms of phase response, you have to lose in terms of

resource. So, what typically happens is that to meet the same magnitude specifications, you

would have to keep a much larger length for the FIR filter. And in the design exercise that has

been administered to all students in the schools you are of course, expected to observe that.

So, you would be designing an IIR filter with given specifications and you would also be

designing an FIR filter with the same magnitude specifications. And you would compare the

requirement of resource when you design it with the IIR approach and when you design it with

the finite impulse response approach to meet the same magnitude specifications. But anyway, we

now need to complete our discussion on how you can meet a set of magnitude specifications.


