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Design of FIR of length (2N+1) by the Truncation Method
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Design an FIR filter of length by truncation. Now, the obvious thing to do, impulse(2𝑁 + 1)

response of the FIR filter, let us call it . So, well I think we should call it h, so we will hℎ
𝐹𝐼𝑅

[𝑛]

because we are using H for the frequency responses.
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So, clearly, is , for n between and and 0 else, is the obvious way to doℎ
𝐹𝐼𝑅

[𝑛] ℎ
𝑖𝑑𝑒𝑎𝑙

[𝑛] − 𝑁 + 𝑁

it. Retain the samples from to , throw away the rest. Now, this is equivalent to− 𝑁 + 𝑁

multiplying the ideal impulse response via the function which is 1 between and , and 0− 𝑁 + 𝑁

outside.
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So, this is equivalent to , is called a window function. I used vℎ
𝐹𝐼𝑅

[𝑛] = ℎ
𝑖𝑑𝑒𝑎𝑙

[𝑛]𝑣[𝑛] 𝑣[𝑛] 

instead of w for window, w is likely to be confused with and I do not want to use w for thatω

reason. So, we will use v.
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So, in this case is equal to 1, for n between and and, 0 else, that is obvious. So,𝑣[𝑛] + 𝑁 − 𝑁

multiplies by a function which is 1 in the range where you are retaining the samples and by 0 in

the range where you are throwing away the sample, that is an obvious. Now, why this approach

or why this perspective is useful to us is because it immediately gives us a clue how we can

identify the scars that are produced in this truncation.

I said that when you cut something, I mean, that is to be expected. When you cut something, it is

going to leave a scar. What scar does it leave on the frequency response, is what we now need to

understand. And the obvious thing to do is to see what happens when you multiply two

sequences in the time domain as interpreted in the frequency domain.

Now, we have done this when we discussed the discrete time fourier transform. At that time, we

had just mentioned that this multiplication property would be useful when we talk about FIR

filter design. But now we are actually coming down to the brass tacks of where this is useful.
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So, obviously, if you were to take the ideal response, has the frequency response or theℎ
𝑖𝑑𝑒𝑎𝑙

[𝑛]

DTFT given by . has a certain DTFT, which we will calculate in a minute and we𝐻
𝑖𝑑𝑒𝑎𝑙

[ω] 𝑣[𝑛]

will call it .𝑉[ω]
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And obviously, the discrete time fourier transform of which, we shall in a minute denoteℎ
𝐹𝐼𝑅

[𝑛]

by , is given as follows, is, as we know, over a contiguous range of , we𝐻
𝐹𝐼𝑅

[ω] 𝐻
𝐹𝐼𝑅

[ω] 1
2π ∫ π

could choose the principal interval to . Well, you know, we had a choice, we could either− π π

move V or we could move .𝐻
𝑖𝑑𝑒𝑎𝑙

Let us choose to move V, we will see why that is better. , so it is like a𝐻
𝑖𝑑𝑒𝑎𝑙

λ( )𝑉(ω − λ)𝑑λ

convolution on the frequency axis. A restricted convolution evaluated between and , we− π π

have derived this property before. Now, let us calculate, to get a feel of how looks likes, so𝑉(ω)

let us actually calculate it.
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So, looks like this. It is a discrete time fourier transform, , that is the value of𝑉(ω)
𝑛=−𝑁

+𝑁

∑ (1) 𝑉[𝑛]

in that region and 0 outside, . Now, we can expand this. It is𝑒−𝑗ω𝑛

.𝑒𝑗ω𝑁 + 𝑒𝑗ω(𝑁−1) +... + 1 + 𝑒𝑗ω +... + 𝑒−𝑗ω𝑁



And obviously, this is a geometric progression with the first term equal to and the common𝑒𝑗ω𝑁

ratio equal to . And therefore, we can calculate this discrete time fourier transform by using𝑒−𝑗ω

the sum of a finite geometric progression.
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Common ratio, , first term or leading term . And that is , this is the𝑒−𝑗ω 𝑒𝑗ω𝑁 𝑒𝑗ω𝑁 1−𝑒−𝑗ω 2𝑁+1( )( )
1−𝑒−𝑗ω( )

sum. Now, we can do a little bit of work to get this in the form of a sin by a sin.

So, we can rewrite this as . We can do this by extracting e raised to power
𝑒𝑗ω𝑁𝑒

−𝑗ω 2𝑁+1
2( )2𝑗 𝑠𝑖𝑛 ω(2𝑁+1)

2

𝑒
−𝑗 ω

2 2𝑗 𝑠𝑖𝑛 ω
2

minus half of this in the numerator and e raised to power half of this argument common from the

denominator. That is what we have done here, e raised to half this argument, common in the

numerator and e raised to half this argument common in the denominator. And the rest of course,

is 2 j sin as you can see.

Now, it is not at all difficult to evaluate this part of the expression. All that we need to do is to

add these indices, add these powers. So, it is , that is easy to do. And it is𝑒
𝑗ω𝑁−𝑗ω 2𝑁+1

2( )−(−𝑗 ω
2 )

very easy to see that it adds to 0. And therefore, this leaves you with just a 1, a unitary factor and

the 2j’s cancel.
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And therefore, what is left with us, is turns out to be , a very vey important𝑉(ω)
 𝑠𝑖𝑛 ω(2𝑁+1)

2

𝑠𝑖𝑛 ω
2

expression indeed. We can sketch this, of course, both of them beginning with 0 at . Asω = 0

far as the denominator is concerned, it goes all the way up to , that is which is 1.ω = π 𝑠𝑖𝑛 π
2

So, it takes only a 1 quarter of a cycle between 0 and . As far as the numerator is concerned, itπ

takes quarter cycles. So, that is a little more difficult to visualize.2𝑁 + 1
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So, denominator is like this, of course, please remember, it is very easy to see ,𝑉(ω) = 𝑉(− ω)

that is very easy to see. You also notice that this, this window function is real and even.𝑣[𝑛]

and are the same. And of course is real. A real and even sequence has a real𝑣[𝑛] 𝑣[− 𝑛] 𝑣[𝑛]

and even discrete time fourier transform.

And that is what you of course observe here. This is fourier transform, this discrete time fourier

transform is indeed real and even as expected. So, I need to work, I am quite satisfied working

on the positive side of and then mirroring it on the negative.ω
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Now, as far as the numerator goes, it begins with 0 and then there are quarter cycles.2𝑁 + 1

One thing is guaranteed. Since the number of quarter cycles is odd, you are definitely going to

end with either or . You are going to end either here or here. Now, it depends, if ,+ 1 − 1 𝑁 = 0

you are going to end with plus 1. If , you are going to end with , which is ,𝑁 = 1 𝑠𝑖𝑛 3π
2 − 1

again you go to .+ 1

So, it is all, you see as N goes from 0 onwards, 0, 1, 2, you alternate between and at the+ 1 − 1

ending. So, you see, the beauty is that you are always going to end at or . So, as1 ÷ 1 − 1 ÷ 1

far as the beginning is concerned, we can find out. Now, the beginning means at , whatω = 0



happens to the, what happens to at ? Now, here again, we do not need to use the𝑉(ω) ω = 0

expression and so on.𝑠𝑖𝑛 ω𝑁
2
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You see, V at 0 is obviously equal to . Why? Because it is just a sum of . Now, you2𝑁 + 1 1'𝑠

would always take the limit, and that limit is of course, it is equal of course to .
ω 0
lim
→

 𝑠𝑖𝑛 ω(2𝑁+1)
2

𝑠𝑖𝑛 ω
2

You could do that. So, of course it is a continuous and analytic function.

But you do not need to do that. You could evaluate it directly at . So, it is very clear thatω = 0

there is going to be an oscillation, this window is going to, the window discrete time fourier

transform is going to exhibit an oscillation.
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is going to show a pattern like this, this time I go out all the way from to . It is going𝑉(ω) − π π

to have its, what is called the main lobe and then it is going to have a decreasing character. So, it

will either end this way or this way. Now, if N even, and at if N odd and mirrored on+ 1 − 1

this side.

You see, these oscillations are going to decrease, because this begins from , they are2𝑁 + 1

going to decrease because the denominator decreases, the denominator increases, I am sorry. So,

that is very obvious. You see, the denominator as you can see, is increasing from 0 to . And theπ

numerator is oscillatory and therefore the refraction would be decreasing in the amplitude of the

oscillations.

And finally, it would reach either or here. This is the nature of the discrete time fourier+ 1 − 1

transform of this window function. Now, there are two features that characterize, of course, you

know where this first null would come. This first null would come where reaches theω(2𝑁+1)
2

value of or reaches the value .π ω 2π
2𝑁+1

And the negative of that point gives you the other null, the other first null. So, it is very clear that

the window discrete time fourier transform has what is called a main lobe, this is the main lobe

and it has side lobes, this is the first principal side lobe and these are the other auxiliary side



lobes. So, there is a principal side lobe and the word principle is meaningful because this is the

most significant side lobe in terms of height.

That is to be expected because the denominator steadily decreases from, steadily increases or 1

by the denominator steadily decreases. The denominator steadily increases from 0 to , so𝑠𝑖𝑛 ω
2 π

it is expected that the first side lobe is going to be the most significant, immediately after the

main lobe.

So, you have a main lobe followed by side lobes. And of course, you know how wide these side

lobes are and you know where the main lobe ends, that is not too difficult to work out. This, for

example, would be the point where reaches the value and therefore you can go on,ω(2𝑁+1)
2 2π

in fact it is not too difficult to see that this would be twice this value, .4π
2𝑁+1

(Refer Slide Time: 17:02)



So, we have main lobes and side lobes, the window DTFT has a main lobe and side lobes. And

we shall now see what role this main lobe and side lobe play in creating scars in the ideal

frequency response. Let us, as we have decided to do, fix the ideal frequency response first. You

have and , and and .ω
𝑐

− ω
𝑐

π − π
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Now, what I shall do is to make the window spectrum and to do that, it is much easier for us to

draw the window spectrum on a separate sheet of paper. We will exaggerate it by drawing the



main lobe and side lobe in prominence and the others are kind of, they are of course there but we

have drawn this. This is the main lobe and the side lobes.

Let us fold this. Let us place this here and now, let us move as we expect to do, you see now this

is the axis, as you desire. Now, this we should, instead of calling it , we will call itλ 𝑉(ω)

. And when we have here, then obviously this point is where or𝑉(ω − λ) λ 𝑉(ω − λ) = 0

, here.λ = ω

So, that is origin 0 point is actually the point now. It is moving. It that right? So, you see,λ = ω

now we need to move all the way beginning from all the way up to here. That isω − π + π

how we need to move it. And what we need to do at every step is to calculate the area under the

product of these functions. You have the ideal response, you have this window response, you

multiply them and then calculate the area under that product. And of course, then divide by 2π

and so on.

The division by is just a constant multiplication all over, so we will not pay so much of2π

attention to that. We will just pay attention to how much is the area in the product of these

functions. Now, if you look at it, when , as is the case here, what is the situation? Theω =  − π

situation is that if the main lobe is small enough, and what you mean by small enough is that N is

large enough. So, you have chosen not too small a filter length, if N is reasonable.

Now, what is reasonable, you have to actually test out. But if it is large enough, then the main

lobe width is small enough and if it is small enough, so are the side lobe widths. So, what it

really means is that around , when this is the situation, it is only a few side lobes that areω = π

coming into this 1 part. You see, if you look at it, the product of these functions is simply that

part of the window response which falls between and , that is the product, rest of it is− ω
𝑐

+ ω
𝑐

chopped anyway.

So, it is essentially, this window spectrum as much of it as overlaps between and− ω
𝑐

+ ω
𝑐

integrated, that is the quantity at any value of . So, at , it is only a few far away sideω ω =  − π

lobes which are coming into the pass band. And therefore, that area is small. Not only that, as I

move this now, we are going to start moving this.



As we move this, by the way, the next main lobe, of course you will argue that this is a periodic

function, we must not forget it is periodic. So, the next such main lobe is going to occur away.2π

So, when this is at , the next main lobe is at . So, anyway it is not going to bring in− π π

anything into the passband even so.

So, it is alright for us to look only at this set of main lobes and side lobes because the other one is

away, so it is not going to interfere. Anyway, now as you start bringing this from2π ω =  − π

towards , what is going to happen for some time, is that it is just these weak side lobes that− ω
𝑐

are going to come into the passband.

And what is the consequence of these weak side lobes? Of course, the side lobes become

stronger and stronger as approaches . So, the total area that is captured in the passband isω − ω
𝑐

going to be oscillatory because you have some side lobes that are negative, some side lobes that

are positive.

So, there is going to be some negative area contribution and some positive area contribution.

And initially those areas are going to be very small, later on those areas are going to grow in

quantity. Now, as we come towards , it is the more important side lobe and finallyω =  − ω
𝑐

the most important side lobe which is going to play the role in the area.

And afterwards, it is going to be the edge of, when you reach the edge of the main lobe here,

then it is the main lobe which is going to start entering the passband and then we are going to

have a totally different situation. Now, we shall take up from this point in the next lecture so see

what happens and then come to a conclusion about the nature of the frequency response that

results when we so truncate. Thank you.


