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Specifications of Low Pass Filter & Phase Response & Summarization of Discrete

Piecewise Constant Filter Design

So, what are the specifications then for the low pass filter?
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Passband edge 1, stopband edge is the minimum of and . The one which is closer isΩ
𝐿𝑠1| | Ω

𝑠𝐿2| |
important, that puts a more stringent transition band. Tolerances carried as they are.
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Passband tolerance, take the more stringent of the two passband tolerances if they are different.

Of course, if they are the same, there is no problem, just take the tolerance as it is.
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The stopband tolerance carried as it is. Passband and stopband nature carry as they are,

equiripple or monotonic, as they are. Naturally, you cannot have different kinds of natures for the

two passbands or two stopbands in the bandpass and bandstop filter, they are to be carried as

they are. Finally, yes, please there is a question.



So, the question is - when we design, we are ultimately going to design with the same tolerance,

yes we are going to, are we going to design with the same tolerance, yes indeed we are going to

design with the same tolerance but that tolerance could come from initially different tolerances.

That means that, obviously when you have different tolerances, one of the tolerances is more

stringent than the other. There is a very ordering principle between tolerances which is not there

between natures. One nature is not better than the other nature, or more difficult that the other

nature.

And secondly, one nature cannot transform into another nature. You see, unlike tolerance.

Tolerances, if you have definitely obeyed a tolerance of 0.1, you obey the tolerance of 0.12. But

that is not true with natures. So, you can possibly add different tolerances and satisfy both of

them by taking the more stringent one. But you cannot do that for natures.

So, the nature must be the same but the tolerances can be different. Yes, there is a question. So,

the question is, that is a good question - can fall outside to , that is very interesting.Ω
0

Ω
𝑠1

Ω
𝑠2

Now, you see, is the geometric mean of and , so all that we can say is that it isΩ
0

Ω
𝑝1

Ω
𝑝2

between and . But then, of course, you can, yes in principle, choose , so that it isΩ
𝑝1

Ω
𝑝2

Ω
𝑠1

Ω
𝑠2

just on one side of this geometric mean. In principle, yes it is possible but in practice, that will be

very rare.

But then, there is trouble. If you do that, then you have the whole, all this transformation goes

haywire. That means if we do indeed put and just on one side of the geometric means,Ω
𝑠1

Ω
𝑠2

then we have trouble in this transformation. That is a good question.

So, can and , of course you are free to choose it anywhere between and . AndΩ
𝑠1

Ω
𝑠2

Ω
𝑝1

Ω
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then is times , so it is the geometric mean. But if you choose and on one sideΩ
0
2 Ω

𝑝1
Ω
𝑝2

Ω
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of the geometric mean between and , then this design procedure falls flat, you cannot doΩ
𝑝1

Ω
𝑝2

this. Because both the mapping of and , will come on the same side of the low passΩ
𝑝1

Ω
𝑠1

Ω
𝑠2

frequency axis.



So, then in fact, I leave this to you as a food for thought. What will you do? Can you change your

strategy a little bit if indeed this pathological situation arises? So, I put this, this is a good

question that has been asked and we will put that as a challenge.
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In the pathological case, and being on the same side of , what can one do?Ω
𝑠1

Ω
𝑠2

Ω
0

One would need, of course, to modify this procedure. Now that we are anyway discussing

challenges, I would like to put one more challenge before the class.
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Now the challenge is, for the same lowpass specifications, show that the Chebyshev filter order

is always less than equal to the Butterworth filter order. What I mean by the same low pass

specifications, is only tolerance. Tolerance is same. On the passband stopband edges is the same.

But of course, the edges are different.

That means you are asking for an equiripple passband or monotonic stopband and putting the

same passband edge and stopband edge and the same tolerances. Then you ask for a monotonic

passband and a monotonic stopband with the same passband edge, same stopband edge and same

tolerances. And you find the order in both these cases. And the challenge is to show that the

Chebyshev order will always be less than or equal to the Butterworth order.

So, it is very interesting. There is a reason therefore, why we would choose one nature or the

other. But I told you that filter design is essentially a game of approximating the ideal. And

approximations always involve compromises, nothing comes for free. So, it might seem that

when you choose an equiripple passband, you should always be doing better, why at all should

you use a monotonic passband if the order is more? The answer lies in the phase response, what

you brushed under the carpet.

So, a phase response on the Chebyshev filter happens to be worse in many ways. And worse in

what way? Worse in the sense of group delay and phase delay. You would like the phase delay

and the group delay to be as constant as possible over the passband, at least over the passband

anyway. And that poses a problem.

So, in fact, it would be interesting, it is not easy to prove this, it is a little involved. But one

would, one should, the designs that one would do in this course, you would actually go through a

design for the Butterworth or the Chebyshev filter, it would be definitely worthwhile to plot the

phase response for, in fact, in the class, different people would perhaps look at Butterworth

designs and Chebyshev designs. And therefore, it would be worthwhile to plot the phase

response in different cases and compare the phase responses.

It would also be worthwhile to take the same specifications and compare the orders that one is

getting for the Butterworth filter and the Chebyshev filter to verify the truth of what one has been

saying here in this challenge. So, that would be an interesting thing to do.

Anyway, so much so then for. Yes, please, there is a question.



Student: When we consider the bandpass filter, we have defined and the bandwidth withΩ
0

respect to the bandpass filter, and . Why do we not do the same when ...Ω
𝑝1

Ω
𝑝2

Professor: So, that is an interesting question.
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In fact, maybe there, the question is - when you took the band pass filter, you had used , theΩ

passband edges to define the , the center frequency, . So, why can you not do the sameΩ
0

Ω
0
2

thing for the bandstop filter. That is a very good question, in fact, maybe that is just an answer to

a challenge that I posed.

Anyway, I would certainly urge you to reflect on what has been suggested. The suggestion is

that, instead of using , geometric mean as , could you use the geometric mean ofΩ
𝑝1

Ω
𝑝2

Ω
0

Ω
𝑠1

and as ? How would the whole design change? And that, perhaps, is a very interestingΩ
𝑠2

Ω
0

alternative to consider.

Anyway, now we are well equipped then, to design bandstop filters as well. And in fact, now let

us summarize the process of any kind of discrete time filter design.



(Refer Slide Time: 12:00)

The overview with hindsight, as they say, hindsight means having now traversed the territory of

discrete filter design, discrete piecewise constant filter design.
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Of course, the first step is discrete time unnormalized specifications. This is what is given to you.

This must first be transformed into normalized specifications by dividing by the sampling

frequency, dividing by and multiplying by , you get the normalized specs.𝑓
𝑠

2π
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The next step is to go from the normalized specifications to the corresponding analog filter

specifications. So, normalized, discrete time specs, that is.ω

We used the bilinear transform, bilinear frequency transform, is and that gives you theΩ 𝑡𝑎𝑛 ω
2

analog filter specifications of appropriate nature in . Of course, here the analog filter has theΩ

same nature. So, high pass goes to high pass, bandpass to bandpass and bandstop to bandstop and

of course, lowpass to lowpass.

The next step is to use the frequency transformation.
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The analog filter specs use the frequency transform to design to get the specs from the

corresponding analog lowpass filter. So, you know how to do that for the bandpass filter and the

bandstop filter. In our method of design, we have put the passband edge at 1 and the stopband

edge is chosen to be the most stringent that emerges from the frequency transformation.

We have of course put the more stringent of the tolerances on the passband and the stopband and

the nature is carried as it is. We can design that analog lowpass filter.
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Let us call it . is the complex frequency variable in the analog lowpass. And of𝐻
𝑎𝑛𝑎𝑙𝑜𝑔,𝐿𝑃𝐹

𝑠
𝐿( ) 𝑠

𝐿

course, now we know what to do. In fact, we have two routes that we can follow.
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So, we have . We can either make , those could be either bandpass,𝐻
𝑎𝑛𝑎𝑙𝑜𝑔,𝐿𝑃𝐹

𝑠
𝐿( ) 𝑠

𝐿
← 𝐻(𝑠)

bandstop or highpass, whichever one we desire. So, we make a frequency transformation in the

analog domain.

And then we replace s by , the bilinear transform and we get the discrete edge as a function1−𝑧−1

1+𝑧−1

of z. This is one route that we can follow. And that is the route that we have discussed so far. But

you see, there is another route. You could, in principle, replace by . And get something𝑠
𝐿

1−𝑧
𝐿
−1

1+𝑧
𝐿
−1

in between.

So, make a bilinear transformation first. And then, replace by some and come𝑧
𝐿
−1 𝐻

𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒
(𝑧)

there. You could also do that in principle. That means for each of these three kinds of filters, the

high pass, the bandpass and the bandstop, you could conceive of a discrete transformation, taking

you from to z or , as you like, really.𝑧
𝐿
−1 𝑧−1 𝑧−1
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Now, the exercise for you is, work out this discrete transformation for all three cases, high𝐻
𝐷
(𝑧)

pass, band pass and bandstop. And a corollary to that question is, observe carefully the nature of

this transformation. Think of this transformation, of course, we expect that transformation to be

rational, could not be irrational.

Now, if it is a rational transformation, you could think of it as a rational system in its own right.

What property does that system have is a question I leave it to you as an exercise. With that then,

we are now all set to carry out filter designs. We are in a position to design the filters that we

have been assigned where the bandpass, bandstop or highpass, right from the discrete filter

specifications, right up to the discrete system function.

Of course, the infinite impulse response filter can now be designed. We shall now therefore,

actually we should now, individually proceed to design the filters that we have been assigned and

from the next lecture we shall commence our discussion on the design of finite impulse response

filters. So, with that now, we are well equipped and we all urge one another to design the infinite

impulse response filters that we are required to. Thank you.


