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A warm welcome to the lecture on the subject of Digital Signal Processing and Its26𝑡ℎ

Applications. We have been discussing frequency transformations in the previous lecture. By

analog frequency transformations, we mean transformations from an analog filter to an analog

filter. In fact, more specifically, a transformation that takes us from a low pass analog filter to an

analog filter of appropriate nature, whether it be high pass or band pass or band stop.

In the previous lecture, we had looked at the transformation that takes us from the low pass to a

high pass filter and from the low pass filter to the band pass filter. We now need to look at a

transformation that takes us from a low pass filter to a band stop filter. And that is going to be a

little more difficult than the other two. In fact, in order of difficulty, the high pass transformation

is the easiest, the band pass is slightly more difficult and the band stop, even more difficult. So,

today we now proceed to look at the band stop transformation.

(Refer Slide Time: 01:26)



So, what we are trying to do is to get a transformation, let us call it , which would replace𝐻
𝐵𝑆

(𝑠)

the low pass complex frequency variable . So that, when we replace by this transformation,𝑠
𝐿

𝑠
𝐿

we would get a bandstop filter with specified characteristics, what we mean by specified

characteristics.
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For a bandstop filter, the specifications look like this. Of course, we always show it in the

positive frequency side. We have a pass band and another pass band, and the clear stop band. So,

unlike the band pass filter, I am sorry, this should be the other way round, I am sorry. Let me

redraw this. As I said, you have a one pass band, you have another pass band and the clear stop

band.

So, unlike the band pass filter, we have just one stop band and two pass band, so maybe in a

sense it is complementary or dual to the band pass filter. In the band pass filter, you have one

pass band and two pass bands. Here, you have one stop band and two pass bands.

So, we want a transformation again which satisfies the three characteristics that we mentioned

the last time. The first is that it must maintain rationality, the second is, it must preserve stability

and finally it must take the imaginary axis to the imaginary axis in a manner that carries with it

the kind of behavior that you desire. That is the frequency axis must map to the frequency axis in

a way that a low pass character transforms to a band stop character.



Now, again we see here, there are two pass bands. And therefore, it is intuitively clear that we

will require a second order transformation, we cannot make do with, it is not going to be a

monotonic transformation. There is going to be some point in the transformation where you have

a movement from one behavior to another. And that is going to happen if the transformation is at

least second order, it cannot be just a first order transformation.

And once again, we take recourse to our intuition of looking for functions that take you from the

imaginary axis to the imaginary axis and there again, we have LC networks to come to our aid.

And last time, we saw that the series LC network comes to our aid in the band pass filter and

therefore, we expect that if we use a parallel LC network, it would come to our aid in a band stop

filter.

(Refer Slide Time: 05:08)

So, let us see how the impedance of a parallel LC network would look. So, the impedance would

be of the form 1 by the sum of the admittances. And the admittances are .𝐶𝑠 + 1
𝐿𝑠

(Refer Slide Time: 05:38)



And this is easy to simplify, we can easily simplify this to get in the numerator, and𝐿𝑠 𝐿𝐶𝑠2 + 1

that can be simplified once again. So, and once again, we note that is the resonant
1
𝐶 𝑠

𝑠2+ 1
𝐿𝐶

1
𝐿𝐶

frequency of the network. And this is a positive constant.

(Refer Slide Time: 06:26)

And therefore, we can rewrite this expression in the form . And we are not terribly worried𝐵𝑠

𝑠2+Ω
0

2

about the specific meaning of B, now, that will in fact now, was the case to the band passΩ
0

2



filter, it will become obvious when we actually go through the transformation. Now, one thing

we need to do, is to note that this is the reciprocal of . And of course, it is rational.
𝑠2+Ω

0
2

𝐵𝑠

So, the movement from rational to rational is guaranteed, there is no problem. So, we do not

need to worry about the fact that after transformation, the resultant filter would remain rational,

there is no problem on that account. But of course, we need to worry about stability.

Now, stability actually follows from a very simple argument. In fact, we will show that if a

particular transformation is stable, in other words if it takes the real part of s to, I mean if it takes,

if it preserves the sign of the real part of s, if it takes the left half plane to left half plane and the

right half to the right half plane, then the same thing happens to the reciprocal.

(Refer Slide Time: 08:00)

So, we will say, which is is stable. In other words, the real part of s and real part of𝐻
𝐵𝑃

(𝑠)
𝑠2+Ω

0
2

𝐵𝑠

have the same sign. Of course, strictly the same sign. By strictly I mean, if the real part is𝐻
𝐵𝑃

(𝑠)

0, the other real part is 0 as well. The imaginary axis goes to imaginary axis.

Now, of course the fact that the imaginary axis would go to the imaginary axis is obvious

because we have taken an LC network. So, when you take its impedance, if you put , it is𝑠 = 𝑗Ω

definitely going to be imaginary. So, we do not need to worry about that. So, the imaginary axis



going to the imaginary axis is not a problem. But what we need to check is this, whether the sign

of the real part is present.

(Refer Slide Time: 09:20)

Now, let , you see, let , whereupon, let give . Now,𝐻
𝐵𝑃

(𝑠) 𝑠 = Σ + 𝑗Ω 𝐻
𝐵𝑃

(𝑠) Σ
𝐵𝑃

+ 𝑗Ω
𝐵𝑃

which is is the reciprocal of this. The reciprocal of this is, . The complex1
𝐻

𝐵𝑃
(𝑠) 𝐻

𝐵𝑆
(𝑠)

Σ
𝐵𝑃

−𝑗Ω
𝐵𝑃

Σ
𝐵𝑃

2+Ω
𝐵𝑃

2

conjugate divided by the mod squared.
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And now, you can see very clearly that the real part of is simply , which is of𝐻
𝐵𝑆

(𝑠)
Σ

𝐵𝑃

Σ
𝐵𝑃

2+Ω
𝐵𝑃

2

course, if you wish to call it that. And now, it is very obvious that when 0 , thisΣ
𝐵𝑆

Σ
𝐵𝑃

≠

denominator cannot possibly be 0. And if the denominator is not 0, it must be positive because it

is a sum of two squares.

That means and must have the same sign, it is obvious now. So, we have proved stabilityΣ
𝐵𝑃

Σ
𝐵𝑆

for the bandstop transformation as well. So, now we have a very strong candidate, all that we

need do is look at what it does to the sinusoidal frequencies. And let us indeed embark upon that

question. So, what does it do when you substitute ?𝑠 = 𝑗Ω
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is . And therefore, this is of the form , it is of course imaginary as you can𝐻
𝐵𝑆

(𝑗Ω) 𝑗𝐵Ω

Ω
0

2−Ω2 𝑗Ω
𝐿

see.



(Refer Slide Time: 11:46)

Where is . And here we have a little more work to do. You see, it is very clear that weΩ
𝐿

𝐵Ω

Ω
0

2−Ω2

now have a point of singularity somewhere on the positive real axis. is a point ofΩ = Ω
0

singularity. Singularity means it diverges; the function is undefined at that point.

And therefore, we expect something unusual to happen at that point. We will see in a minute that

that is exactly what the case is.
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So, let us now consider the bandstop transformation. So, here you have, let us map the critical

points. You know the critical points are going to be a little more difficult to map now. You see,

let us try and visualize what it is that we desire from this transformation. Here, if you look at the

bandstop, if you look at the bandpass transformation, what happened there, and let me draw it

once again for you, this is bandstop.

In the bandpass transformation, what happened was, you had these two stopbands and a passband

in between. And what effectively happened was, you have somewhere in between here whereΩ
0

it is the geometric mean of and . And this was and this was . From the effect ofΩ
𝑝1

Ω
𝑝2

Ω
𝑝1

Ω
𝑝2

this transformation was to bring to 0. This to and went to .Ω
0

− ∞ + ∞ + ∞

So, in fact a pair, this entire thing went to one side of the frequency axis in the low pass factor

and this entire thing, went to the other. Now, in a way, the bandstop transformation, we have

exactly the reverse situation. So, we have two such pairs of structure, this pair and this pair if you

wish to call it that. And therefore, what we expect is that one of these pairs would go on to the

positive side of the frequency axis and the other would go on to the negative side. By a pair, I

mean a segment or the entire stopband and a segment of the entire passband. So, a stopband

passband pair.

In the bandpass filter, it was a segment of the passband and the entire stopband. Now, here we

expect it to be a segment of the stopband and the entire passband that will go to one side and the

other side of the frequency axis in the low pass filter. And therefore, the infinity is going to come

somewhere in between and as expected, that infinity is going to come to , that is why it isΩ = Ω
0

a point of singularity.

So, at there is going to be a jump, it is going to jump from to . Let us seeΩ = Ω
0

+ ∞ − ∞

indeed what happens. So, let us take inspiration from the bandpass filter.
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Let, as in the bandpass filter, be and B be equal to . So, here maybe it isΩ
0

2 Ω
𝑝1

Ω
𝑝2

Ω
𝑝2

− Ω
𝑝1

not quite appropriate to call B the bandwidth, it is like a combination of a stopband and the

transition bands. It is not exactly a bandwidth. It is something slightly different but it is indeed a

segment of the real axis from the frequency axis, that is of course true.

(Refer Slide Time: 16:59)

If we get this, then we can now map the critical points. 0, it is very clear map to 0. In fact, let us

take , by we mean a very small positive frequency which goes towards. So, of course0+ 0+ 0+



goes to . Now, as we move from , the first point that you encounter of importance is .0+ 0+ Ω
0

Now, is a point of singularity.Ω
0

So, we cannot simply use itself and itself, the expression diverges, we cannot use it. But weΩ
0

Ω
0

can use and . So, let us use , by , we mean a value just before . Now, asΩ
0

− Ω
0

+ Ω
0

− Ω
0

− Ω
0

Ω
𝐿

you know, is .𝐵Ω

Ω
0

2−Ω2

This is the frequency transformation. So, , the denominator is slightly positive. And ofΩ
0

−

course, the numerator is finite and positive. And therefore, this is going to go to . In+ ∞

contrast, when we go to , the denominator is slightly negative and of course the numerator isΩ
0

+

clearly positive.

And therefore, this goes to . So, now we know what we mean by being a point of− ∞ Ω = Ω
0

singularity. Not only is the function discontinuous at that point, there is a huge jump. So, in fact

we have seen its derivative is also discontinuous and that is why there is a jump. A function

could be discontinuous but its derivative might turn out to be continuous.

In that case, you do not have an infinite jump. But here, we have an infinite jump. So, it is more

than just discontinuity. Its discontinuity in the derivative, the CES kind of singularity. And of

course, when you go to and, you see now is tricky. We must divide the numerator and+ ∞ + ∞

denominator by .Ω
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So, is , that is how we write it. And therefore, as , , if you likeΩ
𝐿

𝐵
Ω

0
2

Ω −Ω
Ω →  + ∞

Ω
0

2

Ω → 0 0+

and of course, , so this whole thing, .Ω →  + ∞ Ω
𝐿

→ 0

Now, again you may ask whether its or . It should go to and therefore, we need to write0+ 0− 0−

here . Now, we have the critical point mapping very clearly before us. Now, this critical point0−

mapping makes it clear that is a point where we have trouble. So, it will be difficult for us toΩ
0

show both the segments all in one figure, so let us show them in two figures, that will be easier to

show.
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So, we will take the first segment of the bandpass, the bandstop transformation in , somewhereΩ
0

here in between. Now, we know is a geometric mean of and . So, it will beΩ
0

Ω
𝑝1

Ω
𝑝2

somewhere in between. And is going to be somewhere beyond there. So, when we sayΩ
𝑠2

Ω
0

+

or rather , we will go from 0 to .Ω
0

− Ω
0

−

And 0 to is carried, so, this is , this is carried , is carried to on . As we know,Ω
0

− Ω 0+ 0+ 0+ Ω
𝐿

you know the expression, you have already worked this out. is going to go to . That weΩ
𝑝1

+ 1

know from the band pass transformation, we have worked it out. The reciprocal of 1 is 1. So you

see, will go to 1.Ω
𝑝1

is going to come to another point beyond . So, let us call that . And would go toΩ
𝑠1

+ 1 Ω
𝐿𝑠1

Ω
0

−

. And therefore, we have this mapping for the segment between and , this is the+ ∞ 0+ Ω
0

−

frequency mapping. And of course, here too we must not forget that the dependent variable is

carried as is from the bandstop filter to the lowpass filter. The tolerances are carried as they are,

the nature of the passband and stopband are carried as they are.



Here too, we must not forget that we have two passbands and therefore, in principle you could

have had two different tolerances for the two passbands. But then, when you put down the

specifications for the lowpass filter, you need to choose the more stringent of the two, whichever

demands more, that must be put and the other will automatically be satisfied, if at all they happen

to be different. If they are the same, there is no issue at all.

As far as nature goes, you do not have the luxury of having two different natures in the passband.

The two passbands must be of the same nature, either equiripple or monotonic. And of course,

the stopband gets carried as it is. So, that is for the segment from to . Now, that happens0+ Ω
0

−

for a segment from to .Ω
0

+ + ∞
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We will just squeeze this part. , as you know, goes to . We have already worked out forΩ
0

+ − ∞

the bandstop transformation, that , this is easy to verify. And therefore, is goingΩ
𝑝2

→  − 1 Ω
𝑠2

to come to a point, . And of course, is going to come to . And therefore, we haveΩ
𝑠𝐿2

+ ∞ 0−

this specification being put down to the low pass filter.

There is one little word of caution. If you look at the frequency transformation here, this or if you

like write this one, if you recall, in the bandpass transformation, it was . Here, this is not
Ω2−Ω

0
2

𝐵Ω

exactly, the frequency transformation is a negative reciprocal and that is not surprising because

the reciprocal of 1 by, or the reciprocal of an imaginary number has the, of the reciprocal

magnitude and the opposite sign.

So, the sign has been reversed. So, and have got reversed here, that is the point of+ 1 − 1

observation, the reciprocal of an imaginary number is reciprocated in magnitude and the sign is

reversed. That should be noted, these are small, and that is why you should have to careful that

the and roles have gotten reversed. So, now maps to , not to and maps+ 1 − 1 Ω
𝑝2

− 1 + 1 Ω
𝑝1

to and not , that should be clearly noted.+ 1 − 1

Anyway, it is a minor point but we have now understood the transformation. So, now we have

the totality of the transformation before us and we can see now that, we can put down the

specifications of the low pass filter except for one important detail. We have got the



specifications and the positive frequency side and the negative frequency side, but they have to

be symmetric, magnitude symmetric and phase antisymmetric. Phase anyway we are not putting

down anything at all.

So, it is only the magnitude which is of concern. Now, again, the symmetry is there anyway as

far as the passband edge goes. The pass band edge is on the positive frequency side and+ 1 − 1

on the negative frequency side. The problem is with the stop band edge. and or ,Ω
𝑠𝐿2

Ω
𝑠𝐿1

Ω
𝐿𝑠1

whatever you want to call it, or , now you see these mapped stopband edges may not be the𝑠𝐿 𝐿𝑠

negative of one another.
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The mapped stopband edges, and , will not be negative of one another. So, we have toΩ
𝐿𝑠1

Ω
𝑠𝐿2

do what is harder to do here. We take the minimum of and .Ω
𝐿𝑠1| | Ω

𝑠𝐿2| |


