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Now, you see what we need to do is to complete the process of design; we have n with us and

we have epsilon. And we have agreed we will choose epsilon to be the very most that it can

be, and that is . If we have, we cannot unless you are willing to compromise on order; it𝐷
1

does not make sense to choose epsilon, any different from . Having agreed to that we𝐷
1

now want to put down the poles as usual; we need to find out the discrete system function. 

(Refer Slide Time: 00:48)

The next step we design is to obtain the poles. Now, before I proceed to this, I wish to take an

observation about the transition band of filters. The transition band is characterized by no

specification at all on the magnitude. Of course, it is expected that the magnitude would

move smoothly from the passband to the stopband. And normally the transition band does

show a monotonically decreasing character of magnitude; but, that is not specified. So, what

characterizes the transition band is unspecified magnitude and not specifically desired

magnitude at all.

Neither, of course we definitely we do not ask that the magnitude response be 0 all over the

transition band. We cannot ask for if you are asking for; that we are in fact asking for an ideal



filter or something like an ideal filter. And anyway, it serves no purpose to make the

magnitude response 0 all over the transition band. Further, we are not even asking really that

it be monotonically decreasing although that is how it often is.

Of course, it depends on increasing or decreasing will depend on whether the passband

follows the stopband, or stopband follows the passband. So, you see whatever it be we

normally do observe in most of the common designs that there is a smooth movement in

monotonic fashion from the stopband to the passband; or the passband to a stopband.

But this is not specified. So, even if one comes up with a design, where it is non-monotonic;

that is acceptable for the transition band. In fact, the sole characteristic of the transition band

is nothing is asked either of magnitude or phase. Whatever emerges as a consequence of

satisfying the passband requirements and stopband requirements is accepted in the transition

band. Well, so much so then for finding the poles of the Chebyshev filter.

(Refer Slide Time: 03:13)

Now, how we would find the poles is to write down again the analytic continuation. And we

know into as was the case, before for the Chebyshev filter; can be𝐻
𝑎𝑛𝑎𝑙𝑜𝑔

(𝑆) 𝐻
𝑎𝑛𝑎𝑙𝑜𝑔

− 𝑆( )  

obtained by replacing j by S. In other words, needs to be replaced by S / j.Ω Ω
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So, we have this product would be essentially the squared magnitude and analytically

continued. And that is and the poles are obtained by putting the denominator1

1+ε2𝐶
𝑁

2( 𝑆
𝑗Ω

𝑝
)

 

equal to 0 and let us solve that. Now, here you must remember that these poles are complex.

(Refer Slide Time: 04:40)

So, to solve this, ; now there will be several poles indexed by some integers. So,1 + ε2𝐶
𝑁

2

let us call that integer k index of the pole; k is the pole index, as was the case in the

Butterworth filter. You run it over the set of integers. The kth pole is satisfies

is equal to 0. And therefore of course, = .Now, we could 1 + ε2𝐶
𝑁

2( 𝑆
𝑗Ω

𝑝
) 𝐶

𝑁
2 𝑆

𝑗Ω
𝑝

( ) − 1

ε2   



take both the positive and the negative square root on both sides. But we will see that it is

adequate to take any one of them.

Once you are going to run k over the integers; it would take care of the case of positive and

negative, by running it over sufficient number of consecutive integers.

(Refer Slide Time: 05:54)

So, we will we will go back to expanding . So, if you recall essentially𝐶
𝑁

𝐶
𝑁

(𝑥) 𝑁𝑐𝑜𝑠−1𝑥( )  

.So, what we have for the kth pole is that is + or -; it does not matter, but one could𝐶
𝑁

𝑆
𝐾

𝑗Ω
𝑝

( )  

say 1 by epsilon. Well, +- j ; so let us keep the plus minus, and later we can choose any1
ε   

one of them. As I said that we could we could be happy with keeping or .+ 𝑗/ε − 𝑗/ε
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By running k over sufficient over sufficient set of integers; sufficient set means 2N of them.

We need consider only one of either plus or minus only.

(Refer Slide Time: 07:33)

And therefore, we can now write down this equation, , is .Now, let us𝑁𝐶𝑜𝑠−1 𝑆
𝐾

𝑗Ω
𝑝

( )    + 𝑗
ε

put = . So, remember this is a complex argument and therefore we need𝐶𝑜𝑠−1 𝑆
𝐾

𝑗Ω
𝑝

 𝐴
𝐾

+ 𝑗𝐵
𝐾

to have complex solutions to it. Now, we are working with entirely complex cosine, sine and

everything; so, we can now take the cosine of both sides and solve this.
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So, we have is . And that can be expanded in the standard way in which
𝑆

𝐾

𝑗Ω
𝑝

𝐶𝑜𝑠(𝐴
𝐾

+ 𝑗𝐵
𝐾

)

we expand trigonometric functions; this is - . But we recall 𝐶𝑜𝑠(𝐴
𝐾

+ 𝑗𝐵
𝐾

) 𝑆𝑖𝑛(𝐴
𝐾

+ 𝑗𝐵
𝐾

)

that is nothing but hyperbolic of . Remember and are now real; so𝐶𝑜𝑠(𝑗𝐵
𝐾

) 𝐶𝑜𝑠 𝐵
𝐾

𝐴
𝐾

 𝐵
𝐾

 

cos = ; and sin = ,is that right. So, there we go.𝑗𝐵
𝐾

 𝐶𝑜𝑠ℎ(𝐵
𝐾

) 𝑗𝐵
𝐾

 − 𝑗 𝑆𝑖𝑛ℎ(𝐵
𝐾

)
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We have this is equal to + ; and we equate this to 𝐶𝑜𝑠 𝐴
𝐾( ). 𝐶𝑜𝑠ℎ 𝐵

𝐾( ) 𝑗𝑆𝑖𝑛 𝐴
𝐾( ). 𝑆𝑖𝑛ℎ 𝐵

𝐾( ) 

. From where we can equate the real part and the imaginary parts separately? So, we1
ε (𝑗)

equate the real part of cos to 0 here, and the imaginary part to . 1
ε

(Refer Slide Time: 10:18)

, now cannot possibly be 0; so, the only possibility is that𝐶𝑜𝑠 𝐴
𝐾( ). 𝐶𝑜𝑠ℎ 𝐵

𝐾( ) = 0 𝐶𝑜𝑠ℎ 𝐵
𝐾( )

is 0. as we have seen before must be greater than 1, so therefore𝐶𝑜𝑠 𝐴
𝐾( ) 𝐶𝑜𝑠ℎ 𝐵

𝐾( ) 𝐶𝑜𝑠 𝐴
𝐾( )

is 0; and if , now is of course real argument, so there is no problem. If 0𝐶𝑜𝑠 𝐴
𝐾( ) 𝐴

𝐾
𝐶𝑜𝑠 𝐴

𝐾( )
then is = +-1 that is very clear. Yes, please.𝑆𝑖𝑛 𝐴

𝐾( )



Student: (()) (10:59)

Professor: Yes, yes yes yes, he is absolutely correct; there is a question, that is that is correct.

I need to make a correction, I am very glad that somebody pointed this out. So, you see we

have taken, we need to write down n times; so we need to write down n times, this is

absolutely. So, I need to make a correction here; that is correct. So, you see , well let us𝑆
𝑗Ω

𝑝
 

let us therefore make a correction here. Let us put back this argument; so you have  𝐴
𝐾

+ 𝑗𝐵
𝐾

here; so let me repeat that step.

(Refer Slide Time: 12:01)

In fact, let us, so we have = ; that is correct. So right, so we need to so 𝑁𝐴
𝑘

+ 𝑗𝑁𝐵
𝐾( ) + 𝑗

ε

let us complete this working. Let us expand this on the left-hand side we have

or rather - ; or well I am skipping a step𝐶𝑜𝑠(𝑁𝐴
𝑘
). 𝐶𝑜𝑠(𝑗𝑁𝐵

𝐾( ) + 𝑗𝑆𝑖𝑛(𝑁𝐴
𝑘
) + 𝑆𝑖𝑛(𝑗𝑁𝐵

𝐾
)

here, but maybe I will write it down first. So, , this is the left-hand𝑗𝑆𝑖𝑛(𝑁𝐴
𝑘
) + 𝑆𝑖𝑛(𝑗𝑁𝐵

𝐾
)

side. Is that all right? So, we need to correct it, yes.
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And LHS will therefore evaluate to as usual +𝐶𝑜𝑠 𝑁𝐴
𝐾( ) 𝐶𝑜𝑠ℎ 𝑁𝐵

𝐾( ) 

; that is correct. And this is equal to which is the RHS; is this fine?𝑗𝑆𝑖𝑛 𝑁𝐴
𝐾( ). 𝑆𝑖𝑛ℎ 𝑁𝐵

𝐾( ) 𝑗
ε

So, we do not need to introduce a correction there; I am glad that was point out. Is that clear?

So, we need we now proceed to equate the left-hand side and the right-hand side; and

therefore the real and imaginary parts of the left and right side.

(Refer Slide Time: 14:17)

So, once again we would get = 0; and is .𝐶𝑜𝑠 𝑁𝐴
𝐾( ). 𝐶𝑜𝑠ℎ 𝑁𝐵

𝐾( ) 𝑆𝑖𝑛 𝑁𝐴
𝐾( ). 𝑆𝑖𝑛ℎ 𝑁𝐵

𝐾( ) 1
ε

And before we observe that cannot be 0; and that means that is 0. Is𝐶𝑜𝑠ℎ 𝑁𝐵
𝐾( ) 𝐶𝑜𝑠 𝑁𝐴

𝐾( )



that correct? Yes, 0; now if is 0, then clearly has no𝐶𝑜𝑠 𝑁𝐴
𝐾( ) = 𝐶𝑜𝑠 𝑁𝐴

𝐾( ) 𝑆𝑖𝑛 𝑁𝐴
𝐾( )

choice. But to be either + or - 1, needs to be 1; because +𝑆𝑖𝑛2(𝑁𝐴
𝐾

) 𝐶𝑜𝑠2(𝑁𝐴
𝐾

)  𝑆𝑖𝑛2(𝑁𝐴
𝐾

)

= 1.

(Refer Slide Time: 15:17)

So, of course you have again is either + or - 1; and here too we might take either𝑆𝑖𝑛 𝑁𝐴
𝐾( ) 

the positive sign or the negative sign. And all that will happen, the only change that will take

place is that we need to run k over all the integers once again; all the required integers to

cover both the positive and negative sign. So, here too we can be satisfied with taking one of

them, and run k over a sufficient number of integers. So anyway, what we have is, well let me



put, because this we do not need to refer to it again and again. So, here the situation is that

this is either +1 or -1; let us take it to be +1, in which case this becomes , is that right?1
ε

(Refer Slide Time: 16:36)

So, if is , which means is now clearly , inverse of , that is𝑆𝑖𝑛ℎ 𝑁𝐵
𝐾( ) 1

ε 𝐵
𝐾

 1
𝑁 𝑆𝑖𝑛ℎ−1 1

ε( ) 1
ε

interesting. And of course, has as you can see has nothing to do with k so that is𝐵
𝐾

 

interesting; so, is not indexed by the integers at all. So, the index, the integer index is𝐵
𝐾

 

going to act on not on . How will it act on ? And yes, so here it is very good that𝐴
𝐾

 𝐵
𝐾

 𝐴
𝐾

that student corrected; because had we not made that correction on route; we would have had

trouble now in indexing . So, it was very appropriate that that student interjected and made𝐴
𝐾

a correction on N.
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So, we have = 0; which means must clearly be an odd multiple of . And𝐶𝑜𝑠 𝑁𝐴
𝐾( ) 𝑁𝐴

𝐾
 π

2

that tells us that must be of the form ; and now we know the poles because𝐴
𝐾

 (2𝐾 + 1) π
2𝑁

we know again and . Now, emphasize in fact maybe it is a good idea, maybe it is good𝐴
𝐾

 𝐵
𝐾

 

that you know it was serendipity that we made that mistake; because it is very important to

see that we do need a dependence on N, when we satisfy the equation for the cosine part. It is

a dependence on N which allows you to create multiple poles; the dependence on k on the

integer index is a consequence of cos being 0, not just cos anyway. So, coming back𝑁𝐴
𝐾

 𝐴
𝐾

 

to this, we now have an expression for the poles.



And that we have done partly before; let us put back that transparency. So, you will recall that

we had written down is cos of. You see cos inverse of this was equated to ; so
𝑆

𝐾

𝑗Ω
𝑝

 𝐴
𝐾

+ 𝑗𝐵
𝐾

is . And we have expanded this. So, I will just renumber this; I will give
𝑆

𝐾

𝑗Ω
𝑝

 𝐶𝑜𝑠(𝐴
𝐾

+ 𝑗𝐵
𝐾

)

this the number 23. So, now we know where the poles lie; can now be calculated.𝑆
𝐾

 

(Refer Slide Time: 19:42)

It - . And now we can use the standard𝑗Ω
𝑝
. 𝐶𝑜𝑠 𝐴

𝐾( ). 𝐶𝑜𝑠 𝑗𝐵
𝐾( ) 𝑗Ω

𝑝
. 𝑆𝑖𝑛 𝐴

𝐾( ). 𝑆𝑖𝑛(𝑗𝐵
𝐾

)

strategy of putting = , and .𝐶𝑜𝑠 𝑗𝐵
𝐾( ) 𝐶𝑜𝑠ℎ 𝐵

𝐾( ) 𝑆𝑖𝑛 𝑗𝐵
𝐾( ) =  − 𝑗𝑆𝑖𝑛ℎ 𝐵

𝐾( )

(Refer Slide Time: 20:26)



And therefore, we have is , -j times, you see -j x-j, ,𝑆
𝐾

 𝑗Ω
𝑝
. 𝐶𝑜𝑠 𝐴

𝐾( ). 𝐶𝑜𝑠ℎ 𝐵
𝐾( ) Ω

𝑝

. And once again remember neither nor have𝑆𝑖𝑛 𝐴
𝐾( ). 𝑆𝑖𝑛ℎ 𝐵

𝐾( ) 𝑆𝑖𝑛ℎ 𝐵
𝐾( ) 𝐶𝑜𝑠ℎ 𝐵

𝐾( )
anything to do with k. is essentially or , or rather if you if you look at it𝑆𝑖𝑛ℎ 𝐵

𝐾( ) 1
ε 𝐵

𝐾

before we written an expression for here.𝐵
𝐾

 

So, = ; so neither sinh nor have anything to do with k. So,𝐵
𝐾

  1
𝑁 𝑆𝑖𝑛ℎ−1 1

ε  𝐵
𝐾

  𝐶𝑜𝑠ℎ 𝐵
𝐾( )

you might as well just write and there. So, we will just write is equal to𝐶𝑜𝑠ℎ 𝐵( ) 𝑆𝑖𝑛ℎ 𝐵( ) 𝐵
𝐾

 

B, for all k. So, we can just call this cosh B and we can call this . And clearly this is𝑆𝑖𝑛ℎ 𝐵( )



the real part and this is the imaginary part here. This is the imaginary part and this is the real

part of the pole.

(Refer Slide Time: 22:11)

So, is the real part, so + . And now what𝑆
𝐾

− Ω
𝑝
. 𝑆𝑖𝑛 𝐴

𝐾( ). 𝑆𝑖𝑛ℎ 𝐵( ) 𝑗Ω
𝑝
. 𝐶𝑜𝑠 𝐴

𝐾( ). 𝐶𝑜𝑠ℎ 𝐵( )

we need to do, you see we want to find out this is the real part, this is the imaginary part. And

the real part and we can call the real part sigma k as we did, and the imaginary part capital

. And we can now write down an equation that relates and . We are trying to find  Ω
𝐾

Σ 
𝐾

  Ω
𝐾

a contour, a curve in the imaginary complex plane, on which these poles lie.

So, where is that contour? Well, how do you obtain the contour, the different poles are

indexed by the k’s. So, if we eliminate k, we get the contour; and to eliminate it all that we

need to do is to note that 1. 𝑆𝑖𝑛2 𝐴
𝐾( ) +  𝐶𝑜𝑠2 𝐴

𝐾( ) =

(Refer Slide Time: 23:40)



So, therefore 1. And that means = 1.𝑆𝑖𝑛2 𝐴
𝐾( ) +  𝐶𝑜𝑠2 𝐴

𝐾( ) =  
Σ 

𝐾

Ω
𝑝
𝑆𝑖𝑛ℎ 𝐵( )( )2

+  
Ω

𝐾

Ω
𝑝
𝐶𝑜𝑠ℎ 𝐵( )( )2

And we know what contour this is, if the two arguments with the real, if these coefficients

have been equal. If this had been equal to this, we would have landed up with a circle.

Because these are unequal, we get an ellipse. Further, which is the major and which is the

minor part axis of the ellipse? Now, this ellipse is aligned with the axis.

In other words, the major and minor axis are coincident with the vertical and horizontal here;

it is not inclined ellipse. The question is which is the major axis and which is the minor axis?

And to answer that question we need to decide which is greater. Is greater or is𝐶𝑜𝑠ℎ 𝐵( )

greater? Which one would be greater? It is the cosh hyperbolic which is always𝑆𝑖𝑛ℎ 𝐵( ) 

greater, for a real argument. Because ; and therefore,𝐶𝑜𝑠ℎ2 𝐵( ) = 1 +  𝑆𝑖𝑛ℎ2 𝐵( ) 𝐶𝑜𝑠ℎ2 𝐵( )

is always going to be greater than . And therefore, in this it is very clear that the𝑆𝑖𝑛ℎ2 𝐵( )

major axis is on the imaginary; and the minor axis is on the real. Is that clear to everybody?

(Refer Slide Time: 25:47)



So, we get an ellipse, this is the contour that we land up with. This is the contour

1; this is the contour. And of course, this point would beΣ
Ω

𝑝
𝑆𝑖𝑛ℎ 𝐵( )( )2

+  Ω
Ω

𝑝
𝐶𝑜𝑠ℎ 𝐵( )( )2

=  

, and this would be , and the other points can be determined; ofΩ
𝑝
𝑆𝑖𝑛ℎ 𝐵( ) Ω

𝑝
𝐶𝑜𝑠ℎ 𝐵( ) 

course, one must mark the specific poles. So, you know and and now𝐴
𝐾

 𝑆𝑖𝑛 𝐴
𝐾( ) 𝐶𝑜𝑠 𝐴

𝐾( )
need to be determined; or you need to find out and then find out where these poles will lie𝐴

𝐾
 

precisely. Now, the easiest thing to do is to how do you mark these poles? The easiest thing to

do is to draw two circles. One with radius , and the other with radiusΩ
𝑝
. 𝑆𝑖𝑛ℎ 𝐵( )

.Ω
𝑝
. 𝐶𝑜𝑠ℎ 𝐵( )



What I am saying is it will be easiest for us to draw two circles like this. The real part can be

marked by taking the inner circle here; all that you need to do is to see where this angle. The

angle is . All that you need to do is to draw and draw a radial line making an2𝐾 + 1( ) π
2𝑁

angle of . And see where it intersects the circle and that gives you the real part.(2𝐾 + 1) π
2𝑁

On the other hand, the imaginary part can be obtained by using the larger circle. And on the

larger circle one takes the same radial line; but then the imaginary part is obtained by the

measurement coming from the larger circle.

So, one has to be careful in marking the poles; the one, I must emphasize that when you draw

radial here with angle . is , where it intersects this circle will give you the𝐴
𝐾

𝐴
𝐾

 (2𝐾 + 1) π
2𝑁

real part; where it intersects this circle gives you the imaginary part. But, one must not

straightaway take the intersection of this arc with the ellipse to find the location of the pole;

no, that is not what it is. One must take the measurement of real imaginary part and mark it;

and it of course would lie on the ellipse. So, I am just giving you a strategy to measure the

real imaginary part.

But one must not use the radial line with angle to intersect with the ellipse and mark the𝐴
𝐾

 

pole there; that is not correct. Anyway, I leave it to you as an exercise; this is an exercise

actually mark the poles.

(Refer Slide Time: 29:51)



Mark the poles on the ellipse, for n equal to 2; I am sorry for n equal to 3 and n equal to 4.

And you will get a feel of how the poles are located; you would also observe that there are

2N values of k to be taken, as was the case with the Butterworth filter. You can take any

consecutive 2n values; so you could start with k equal to 0 and run all the way up to k equal

to 2N -1. Or you could start with 1 and run up to 2N, it does not matter. Whatever it be after

you mark all the 2N poles on the ellipse; the poles in the left half plane would give you the

poles corresponding to . So, let us write that down. The remaining steps are𝐻
𝑎𝑛𝑎𝑙𝑜𝑔

(𝑆)

identical.        
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Mark poles, poles in LHP give you . Now, there is one important observation here,𝐻
𝑎𝑛𝑎𝑙𝑜𝑔

𝑆( )

which does not happen in the Butterworth filter. And that is what do you want the numerator

to be in ? In other words, what is the magnitude response when omega equal to 0.𝐻
𝑎𝑛𝑎𝑙𝑜𝑔

(𝑆)

Now, there you have to be careful, because the response for omega equal to 0 is not 1

identically here; it depends on whether N is odd or even. So, you recall the response at Ω

equal to 0; how would you determine it? Well, we had ,  and . 1

1+ε2𝐶
𝑁

2( Ω
Ω

𝑝
)

𝑁𝐶𝑜𝑠(…)( ) −1

Now, let us look at the two situations. When you have , ; of course can be𝐶𝑜𝑠−1(0) 𝐶𝑜𝑠−1(0)

taken to be . However, when N is even, this becomes cos of an even multiple of ; which π
2  π

2

is either +1 or -1. So, when N is even, this evaluates to +-1; and therefore, this evaluates to 1.



So, this response is . On the other hand, when N is odd; then you have an odd multiple1
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of , so this evaluates to 0. So, this response is just that is 1. So, you have toπ
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distinguish between N odd and N even to put down the response at omega equal to 0.

And therefore, when you put down the numerator in ; you must at S equal to 0,𝐻
𝑎𝑛𝑎𝑙𝑜𝑔

(𝑆)

equate it to the expected response for omega equal to 0, and not identically 1. If N is odd, it

evaluates to 1; if N is even, its square would evaluate to . And therefore, the magnitude1
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itself would evaluate to , is that right? That care needs to be taken when specifying the1
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Butterworth, the Chebyshev filter, unlike the Butterworth filter. And finally, once you have

, the remaining process is common to the Butterworth filter.𝐻
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Replace S using the bi-linear transform and get the discrete time system function; that

completes the design of the Chebyshev lowpass filter. And now we are well equipped to

proceed to see how we could design other kinds of filters; either with the Butterworth

approximation or the Chebyshev approximation. By using what are called analog frequency

transformation.


