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Now, we shall look at the possibility of an equiripple passband and a monotonic stopband.

So, you see we move on to what is called the Chebyshev approximation of filter design.

(Refer Slide Time: 00:32)

Chebyshev is a very well known mathematician; he has made some very important

contributions to the theory of polynomials and rational approximations. So, his work has



given a lot of insight into the behavior of polynomials, and into the choice and the use of

polynomials and rational functions.

In particular, one class of polynomials that he proposed are called the Chebyshev

polynomials, which are actually related to trigonometric functions; but are not trigonometric

functions on their own. And we are going to employ those polynomials in our design here.

What we want to do is to have an equiripple passband and a monotonic stopband. So, we

expect the passband to have a magnitude something like this; and we expect of course the

stopband to have a magnitude something like this.

Now, if you want an equiripple behavior in the passband, you want this essentially to

correspond; where do you get equiripple behavior from? Equiripple essentially one way to

get equiripple behavior is to use the sinusoidal function; because, the sinusoids oscillate in

equiripple manner over cycles. And what is a function which is sinusoidal in a certain range,

and then becomes monotonic later. Now, here we have to use a little beyond high school

mathematics. We have to extend our ideas of trigonometry to complex functions; so in fact if

we choose the function cos θ for example.
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Cos θ can be written in complex form as, . And at the same time the hyperbolic𝑒𝑗θ + 𝑒−𝑗θ

2

cosine or the hyperbolic function cosh; cosh x is defined as , is a close relationship𝑒𝑥 + 𝑒−𝑥

2

between them cos hyperbolic. Now, θ in principle can be complex and so can x; so, one does



not have to restrict this definition only to real’s. And when we do that, we get this whole class

of functions; that is equiripple in a certain region and then becomes monotonic.
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In fact, let us define the function CN(x) = cos(N cos-1 x). Now, interestingly we will show that

it can also be written as well in terms of the hyperbolic cosine; so, let cos-1 x = θ. Remember

we are now not restricting ourselves to real x at all; although we will later on take the special

cases of real x in different regions.

But, we are allowing x to be complex, and therefore let cos x, cos-1 x = θ; and we are agreeing

that all quantities are complex. And therefore, x is of course cos θ and therefore we could

expand x in terms of θ.
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It is . But, this is also cosh (jθ) and therefore jθ = cosh-1 x. Now, go back to CN(x).𝑒𝑗θ + 𝑒−𝑗θ

2
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It is cos(Nθ) , which is also cosh (jNθ) ; and therefore that is also = cosh (N cosh-1x). Because

jθ is cosh-1 x; so therefore it is a very interesting observation that we have. That cosh (N

cosh-1x) is also equal to cosh (N cosh-1x). And now we will write down this expression for a

few values of the integer N. So, let us take N = 0 and N = 1; now those are easy.
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So, C0 x = cos 0 = 1. C1 x = cos(cos-1x) = x. So, as you see both C0 and C1 are polynomials;

you see C0 is an even polynomial. By an even polynomial, I mean a polynomial with only

even powers of the argument, and C1 is an odd polynomial. So, it is a polynomial with only

odd powers of the argument; now we shall generalize this by using a simple step of induction.

We shall write down CN+2 (x) and CN (x); so let us write down.
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CN+2 (x) and CN (x) = cos(N+2) cos-1x + cos(N cos-1x). And we can make use of the

trigonometric identity, when you add two cosines. So, this is 2 times quote the product of 2

cosines; the first one is the average of these two, and the second is this minus this by 2. So,

you have this is equal from trigonometric identities to 2 cos{(N+1)cos-1x} cos(cos-1 x). And

therefore, we have a very interesting recursive relation between the CNs.
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CN+2(x) + CN(x) = 2x CN+1(x) and therefore we have a recursion. CN+2(x) =CN+1(x) - CN(x); this

is a recursion which takes you to successive CN x, starting from 0 and 1. So, by induction we

can now construct the CN x beginning with the 0 and 1 case.



So, if I know C0 and if I know C1 ; I can construct C2. If I know C1-C2, I can construct C3; I

can keep doing this. And this also makes it very clear that the CNs are all polynomials;

because by induction if CN is a polynomial in x. If CN plus 1 is a polynomial in x, then this

expression must be a polynomial in x.

Because you are multiplying 2x by polynomial in x, and subtracting another polynomial of x;

and therefore when you subtract two polynomials, you must get a polynomial. In fact, you

can also say something about the order of the polynomial. We have already seen by induction

that C0 is of degree 0 and C1 is of degree 1.

So, in general if we assume CN to be of degree N, then you have a degree N polynomial here;

and you have a degree N+1 polynomial here. So, multiplying by x increases the degree by 1;

so it would become a degree N + 2 polynomial coming from here and a degree N polynomial

coming from there.

And therefore the overall polynomial is of degree N + 2. So, if we have proved in the

inductive step that CN is of degree N and CN+1 is of degree N + 1. Then, it follows by

mathematical induction that CN+2 must be of degree N + 2; much more follows from this

recursion.

We have seen that C0 is odd and C1 is even; let us assume that by again as an inductive basis

that this is true for a particular N and N+1. You have to be assuming the basic step here is

true for two successive values of the integer; and it is of course true for 0 and 1. So, suppose

CN and CN+1 obey this property that they are odd when N is odd; and even, when N is even;

will prove that N + 2 also obeys the property.

So, you see let us, let N be odd, then N + 2 will also be odd. Now, this is then assumed to be

an odd polynomial and this happens to be an even polynomial. But, an even polynomial

multiplied by x makes it an odd polynomial again; and an odd polynomial minus an odd

polynomial must give you an odd polynomial.

So, if CN is odd then and CN+1 is even; then you go back to CN+2 being odd. And conversely, if

N is even and then CN is assumed to be an even polynomial; then CN+1 would be an odd

polynomial. Multiplying an odd polynomial by x makes it even, and therefore an even

polynomial minus an even polynomial will give you back an even polynomial.



And therefore, by mathematical induction CN is an odd polynomial for odd N and an even

polynomial for even N. All these are very interesting conclusions. Because we have seen so

let us summarize these conclusions.
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CN (x) is an odd polynomial for odd N, an even polynomial for even N; and these are called

the Chebyshev polynomials. In fact now, we can use two different expressions for the same

polynomial; we will just repeat that once again. And the two different expressions are useful

in different regions.
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The same CN (x) can be written as cos(N cos-1 x) = cosh(N cosh-1x). This is useful for x

between 0 and 1; because then cos-1 x becomes real. And this is useful when x > 1, because

cosh for a real argument is always greater than 1, greater than or equal to 1. Cosh x for real x

is of course an even function; so cosh of x is equal to cosh of minus x. And therefore, we

need only to look at the positive side of x.

(Refer Slide Time: 14:59)

Cosh x is always greater than 1, x ≥ 0 ,real of course; cosh x ≥ 1. In

fact, cosh 0 = 1 and one can easily see that cosh x = . And this is𝑑
𝑑𝑥

𝑒𝑥 − 𝑒−𝑥

2

always > 0, for x > 0, and therefore the derivative is always positive. And therefore cosh x

strictly increases beyond 1. So, for x > 1, we can use the expression involving hyperbolic

cosine; and for x < 1, we use the trigonometric expression. And that gives us an insight into

the behavior of the Chebyshev filter. Now, let us make use of this.

See, what we want is to use that 0 to 1 region to create a passband, and the beyond 1 region to

create the transition band and the stopband. So, let us do the following as we did for the

Butterworth case. What we want is up to between 0 and 1, this Chebyshev polynomial is

going to oscillate or alternate.

So, it is going to be equiripple; and it is not going to go beyond a certain range, depending on

what you might see. You can always multiply this Chebyshev polynomial by a constant by a

tolerance to keep it within a certain range. And beyond x equal to 1 of course, you can allow

it to increase monotonically; so that you go into the transition band and the stopband.



The only catch is the Chebyshev polynomial itself is increasing, but you want the resultant

expression to decrease; so you can put it in the denominator. But, if you put in the

denominator, you do not want to create a situation; at 0, you want to take the value 1. So, we

use the same strategy as we did for the Butterworth filter.

(Refer Slide Time: 17:26)

We create the expression |Hanalog(jΩ)|2 for the Chebyshev case is = . Now, why are1

1 + ϵ2𝐶
𝑁

2( Ω
Ω

𝑝
)

we doing this? For Ω between Ωp by the way is the passband edge. Why are we doing this?

For Ω between 0 and Ωp, this argument is between 0 and 1. And therefore you are employing

the equiripple part of the Chebyshev response. For Ω > Ωp, this quantity becomes greater

than 1; so you are employing the monotonic part of the Chebyshev polynomial.

And of course, for Ω > Ωp, this quantity would monotonically increase; and therefore the

denominator monotonically increases leading to a monotonic decrease of this expression.

And therefore, we have achieved what we wanted. An equiripple behavior in the passband

and a monotonically decreasing behavior starting from the edge of the passband; all through

the transition band and then down into the stopband. Of course the quantity Ɛ2 allows you the

passband tolerance; so we say Ɛ2 because Ɛ is assumed to be real. And therefore we take a

square of a real number to ensure it is positive. That is what we really mean by saying Ɛ2 .

So, therefore let us now write down the two requirements; this is this is the magnitude

squared expression for a Chebyshev filter. Let us write down the two requirements on; of



course here what is to be designed. If you want to design a Chebyshev filter, so designing a

Chebyshev filter.
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Design means the following: obtain Ɛ, obtain N, and then obtain therefore obtain Hanalog(S)

And how would you obtain Hanalog(S) ? You would have to identify the poles and then

segregate those poles that correspond to Hanalog(S) , by removing the poles that correspond to

Hanalog(-S) . So, let us obtain Ɛ first, Ɛ is very easy.

(Refer Slide Time: 20:35)

You see, it is very clear that there would be an oscillatory behavior in the passband. I am

plotting |Hanalog(jΩ)|2, and then from the edge of the passband; and downwards there would be



a monotonic behavior. And the oscillatory behavior essentially for how much is the

oscillation, how.

Well, when CN = 0, of course you reach this point; and when CN = 1; that is the maximum

value it can take. When the cosine takes the value of 1; you reach this point. And therefore

the passband constraint, you want this to be the tolerance here, this should not go below 1 -δ1.

And this should not go above δ2 that is what you want.

So, passband requires that > (1 -δ1)2 . Remember you are talking about the squared1

1 + Ɛ 2

magnitude function; and therefore we have a constraint on ϵ. If you look at it this does not

involve N at all that is interesting; the passband has very little to do with N, seems so.
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So, let us write down ε2 ≤ - 1 And recall that this is the D1 that we saw in the1

(1−δ
1
)2

Butterworth filter; ε ≤ + . Now, you see it looks like you have a range for ε ; I mean in𝐷
1

principle you could even choose ε =  0. So, nothing comes for free.

As I said it looks as if N has nothing to do with the passband; but it does indirectly. If you

choose ε smaller, you will see that you will actually be pushing for a larger N. So, now let us

of course we need to obey this constraint; ε ≤ + . But, it is in our interest to choose the𝐷
1

largest possible ε , which is essentially ε = .we will see that in a minute.𝐷
1
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So, having chosen the ε stopband constraint says ≥ I am sorry is ≤ δ2
2; it

1

1+ε2𝐶
𝑁

2(
Ω

𝑠

Ω
𝑝

)

must be within the stopband. So, at the edge of the stop, you see

because because of monotonicity. So, if the requirement is obeyed

at the edge of the stopband; it is obeyed all over the stopband. If

you have ensured that at the edge of the stopband, you have

reached the value ≤ δ2
2; you are bound to remain within δ2

2 all over the stopband.

So, you need to check only at the edge of the stopband. Now, we can solve this very easily;

but here remember we have ( ＞1. And therefore we must make use of the
Ω

𝑠

Ω
𝑝
 )

cos hyperbolic or cosh expression and there we have.
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≤ 1+ ) Or, in other words -1 ≤ ); and there again we land up1

δ
2

2 ε2𝐶
𝑁

2(
Ω

𝑠

Ω
𝑝

1

δ
2

2 ε2𝐶
𝑁

2(
Ω

𝑠

Ω
𝑝

with the familiar D2 here, D2 from the Butterworth filter. So, remember it is very interesting

that the same quantities occur both in the Butterworth filter and the Chebyshev filter. Now, in

place of CN, we must make use of the hyperbolic cosine expression.
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And therefore, we have cosh2 (N cosh-1 ) ≥ . And here we can take the positive
Ω

𝑠

Ω
𝑝

𝐷
2

ε2

square root on both sides. If we take the positive square root, square root is a monotonically

increasing operation. And you have if you have positive quantities on both sides. So, if you



take the square root on both sides, the inequality is preserved; but, you must remember to

take the positive square root.
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That gives us cosh (N cosh-1 ) ≥ And of course, cosh-1 (.) of both sides; it is valid to
Ω

𝑠

Ω
𝑝

+ 𝐷
2

ε

take cosh-1 of both sides. Because cosh-1 and cosh are both monotonically increasing

functions. When is it valid to take a function of both sides of an inequality? It is valid if the

function is monotonically increasing. If a > b, then fa is > fb; if f is a monotonically

increasing function of its argument.

If it is a monotonically decreasing function of the argument; then the inequality is reversed. If

the function is neither monotonically increasing nor monotonically decreasing; then it is

invalid to take the function of both sides of an inequality that is the beauty. You can operate a

function on both sides of an equality without any concern; but when there is an inequality,

you have to be worried about whether the function is monotonic or not.

If it is not monotonic, then the inequality can either be destroyed entirely or reversed or

preserved. So, here of course cosh-1 cosh itself is a monotonically increasing function. So, its

inverse also is going to be a monotonically increasing function. So, since it is a

monotonically increasing function, we can take cosh-1 on both sides, and that gives us.
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N cosh-1 ≥ cosh-1 ( . N ≥ [ ] . As expected there is a minimum value of
Ω

𝑠

Ω
𝑝

𝐷
2

ε )
𝑐𝑜𝑠ℎ−1 𝐷

2

ε

𝑐𝑜𝑠ℎ−1(
Ω

𝑠

Ω
𝑝

)

the order; and that minimum value is given by this expression. And of course you must put

here a ceiling; because N cannot be non-integral. So, you need to put there the integer just

above that quantity. If this quantity works out to be 7.3, the ceiling is 8 and so on. Now, of

course naturally you would choose N equal to the ceiling; you do not want to invest more

resources than required.

But, this is what requires to be obeyed by the order. And now it is also very clear why ε

indirectly plays a role in the order. You see, cosh-1 is a monotonically increasing function of

its argument; the smaller you choose ε , the larger this argument; and the larger the cosh-1 ,

and therefore the larger the requirement on the order. So, it is in our interest to choose as

large an ε as we can; and that is . So, let us make a remark.𝐷
1
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Therefore, it is in our interest to choose as large an ε as we can, namely ε = + . And𝐷
1

having made that choice, then of course we have a simple expression for the order.
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And that order is N = [ ]. So, much so then for the design of ε and N; we shall
𝑐𝑜𝑠ℎ−1 𝐷

2

𝐷
1

𝑐𝑜𝑠ℎ−1 
Ω

𝑠

Ω
𝑝

proceed in the next lecture to remark on the behavior of this choice as we change δ1 and δ2

and what happens once we have made this choice of N, as far as the choice of system

function is concerned. So, we will do that in the next lecture.




