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Analog Filter Design using Butterworth Approximation

So, we will first look at the Butterworth possibility now. We will, we will look at the design of

analog low pass filters using the Butterworth Approximation.
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Now, you see in the Butterworth Approximation, you want the passband and the stopband both

to be monotonic. So obviously if you want the passband to be monotonic and stopband to be

monotonic the only sensible way of doing it is to let the magnitude decrease starting from zero

frequency all the way down to the edge of the passband and then again starting from the edge of

the passband all way down to infinity.

That seems to be the most sensible way to do it. Which means you need, you see now that is

another interesting thing. Since we are dealing only with magnitudes, we shall not design the

system function of the analog filter directly. What we will design instead is what is called the

magnitude complex system function.



So, in general we introduce the idea of what is called a magnitude squared system function. And

a magnitude squared system function is essentially the analog system function or the filter analog

system which we will call and we will explain why that is the case. You𝐻
𝑎𝑛𝑎𝑙𝑜𝑔

(𝑠)𝐻
𝑎𝑛𝑎𝑙𝑜𝑔

(− 𝑠)

see, you want to take the . Is not it?𝐻
𝑎𝑛𝑎𝑙𝑜𝑔

(𝑗Ω)| |2
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What you want is, what we want to design is . Well, I mean you could say you𝐻
𝑎𝑛𝑎𝑙𝑜𝑔

(𝑗Ω)| |2

want to design that is alright. But anyways it is much easier to do square as we see𝐻
𝑎𝑛𝑎𝑙𝑜𝑔

(𝑗Ω)| |
in a minute. They are equivalent because it is all non-negative.
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So, you see can also be re-written as . But remember𝐻
𝑎𝑛𝑎𝑙𝑜𝑔

(𝑗Ω)| |2 𝐻
𝑎𝑛𝑎𝑙𝑜𝑔

(𝑗Ω) * 𝐻
𝑎𝑛𝑎𝑙𝑜𝑔

(𝑗Ω)

we are going to have real coefficients in . They are all going to be real coefficients in𝐻
𝑎𝑛𝑎𝑙𝑜𝑔

(𝑠)

S.

So, when we take the complex conjugate, the real coefficients remain unchanged, but S gets

complex conjugated. So, we could have written S conjugate or you see since we are talking about

j , the complex conjugate of j is -j . So, even if you write -s there, we would get theΩ Ω Ω

complex conjugate.
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So, in fact, what we are saying is, we want into evaluated over𝐻
𝑎𝑛𝑎𝑙𝑜𝑔

(𝑠 ) 𝐻
𝑎𝑛𝑎𝑙𝑜𝑔

(− 𝑠 )

. That is because taking the complex conjugate amount to replacing . Now you𝑠 = 𝑗Ω 1 − 𝑗Ω

may wonder, why we did not write . You see, what we want to ultimately design is𝐻
𝑎𝑛𝑎𝑙𝑜𝑔

(𝑠 )

what is called an analytical function of S.

Now, if we use a complex conjugate on s, then what we get is a non-analytical function. The

moment you complex conjugation does not allow for derivatives in the first place forget about in

the higher order differentiation. So, we cannot use s complex conjugate but we can use -s. -s will

retain the analyticity and therefore, we choose -s over s conjugate. Anyway, so we have chosen

to design into .𝐻
𝑎𝑛𝑎𝑙𝑜𝑔

(𝑠 ) 𝐻
𝑎𝑛𝑎𝑙𝑜𝑔

(− 𝑠 )

And of course, what we have to do is design this compound system and then we have to identify

which is its zeros and poles correspond to and which of its zeros and poles𝐻
𝑎𝑛𝑎𝑙𝑜𝑔

(𝑠 )

correspond to . But that is not a difficult job at all. We know that we want the filter𝐻
𝑎𝑛𝑎𝑙𝑜𝑔

(− 𝑠 )

to be stable and the analog domain is plane if stability is the case. In fact, not just stability, we

want to be positive real. And positive realness means all the zeros and all the poles must be on

the left half side of the S plane.



So, once we have the collection of zeros and poles corresponding to this product, H analog S into

, it is very easy to identity what is . Take all the zeros and the poles in𝐻
𝑎𝑛𝑎𝑙𝑜𝑔

(− 𝑠 ) 𝐻
𝑎𝑛𝑎𝑙𝑜𝑔

(𝑠 )

the left half of the plane and put them into H analog. Automatically all the -s go into

. That is easy.𝐻
𝑎𝑛𝑎𝑙𝑜𝑔

(− 𝑠 )
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So, you see, if you want a monotonic response for – you see you want to𝐻
𝑎𝑛𝑎𝑙𝑜𝑔

(𝑗Ω)| |
monotonically decrease in passband and stopband. So it must have its maximum at and itΩ = 0

must steadily decrease as you move from zero to infinity. That is that is the kind of response that

we want.

Now, of course, the response at zero should not go up without bar. It must be finite. In fact, it is

most convenient to make it 1 and then we want the response to die. So, what can be envisaged as

a function of ? Now remember, we are taking into . So, therefore,Ω 𝐻
𝑎𝑛𝑎𝑙𝑜𝑔

(𝑗Ω) 𝐻
𝑎𝑛𝑎𝑙𝑜𝑔

(− 𝑗Ω)

the product is - a magnitude squared function is necessarily going to be a real function of .Ω

So, I need to look for a real function of and the simplest real function of , whichΩ Ω

monotonically decreases as you go from zero to infinity essentially a function where the

denominator monotonically increases and you want it to be rational so denominator must of

course be rational function in fact, why rational?



The simplest thing to do is to choose the denominator to be a polynomial. And what simpler

polynomial can you have; the polynomial which has a constant term and other term which

increases monotonically with .Ω
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In other words, what we are envisaging is a magnitude squared function that looks like this. 1 by

1 plus, you want it to be non-negative. So, you have by same parameter, positive parameter,Ω

the whole to the power 2N. Now, let us understand this. You see, why have we chosen this? As

we anticipated, at this is 1 and therefore, the response pars at 1.Ω = 0

As goes from zero to infinity, this monotonous, the denominator monotonically decreases fromΩ

zero to infinity and therefore, this function monotonically decreases from 1 towards zero. And

further this , why have we introduced and why have we introduced N? You see N controlsΩ
𝐶

Ω
𝐶

the rate at which the response drops.

And controls the point at which the response reaches a certain value. For example, ,Ω
𝐶

Ω = Ω
𝐶

this is 1 and therefore, this magnitude squared reaches what is called the half power point. The

magnitude squared becomes half and therefore, that is called the half power point if you were to

put in a sinusoid in the unlock domain into the filter and that sinusoid will come out with half

power at .Ω = Ω
𝐶



So, point of half power changes as you change . And how fast the response drops after isΩ
𝐶

Ω
𝐶

controlled by N. The larger the N, the faster it drops. Now, you see, just these 2 parameters, Ω
𝑐

and N. We shall be able to meet any magnitude specifications that we choose. Let us see how.
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So, let us assume that you have arrived at. The magnitude specification is as follows: This I am

talking about the analog domain. So, our passband S, stopband S. In the passband, we have

agreed that you want the response to be between and . And in the stopband, you1 + δ
1

1 − δ
1

want it to be beyond .δ
2

And the passband p is at and the stopband s is at . And this is the analog frequency .Ω
𝐻

Ω
𝑆

Ω

Now, we shall see in a minute that we can meet this by using the Butterworth filter. Now, in fact,

we can do a little better. In the Butterworth filter, we do not even need this.
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We do not even need . We can remain between 1 and in the passband. And in fact,1 + δ
1

1 − δ
1

it is very easy. We will write down the equations that we need to satisfy.

(Refer Slide Time: 11:40)

You see, what we want is at the passband edge, . Remember1/(1 + (Ω
𝑃
/Ω

𝐶
)2𝑁) ≥ (1 − δ

1
)2

we are talking about squared magnitude. And the second equation that we have is at the edge of

the stopband at , it must be . And now, it is very easy to solve these 2 equations.Ω
𝑆

≤ δ
2

2



In fact, these are all non-negative quantities. So, if we multiply both sides for non-negative

numbers then the – you see, remember, we must not forget, we are dealing with inequalities here.

So when we multiply both sides of an inequality, we have to be careful whether we are

multiplying by a non-negative number or a negative number. Here, luckily all of them happen to

be non-negative. Anyway, you know let us take the first inequality and let us note that – let us

give them number. Let us call this inequality 1 and let us call this inequality 2.

(Refer Slide Time: 12:52)

For inequality 1, we have . And in the second inequality, we1/(1 − δ
1
)2 − 1 ≥ (Ω

𝑃
/Ω

𝐶
)2𝑁

take the reciprocal. And when we take the reciprocal, of course, the inequalities reverse. They

are all non-negative quantities. If I take the reciprocal of both sides, the inequalities reverse. And

of course, luckily n1 of the sides is zero, so reciprocal is acceptable.
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So, we take the reciprocal of the second. And you get . Therefore, we1/δ
2

2 ≤ 1 + (Ω
𝑆
/Ω

𝐶
)2𝑁

have . So, now we have 2 inequalities here. You see what we need to1/δ
2

2 − 1 ≤ (Ω
𝑆
/Ω

𝐶
)2𝑁

do is to first eliminate 1, we have to solve for 2 quantities and – and N.Ω
𝐶

Ω Ω
𝐶
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You see, so what are the design parameters here, and N. You see, we can, let us give theseΩ
𝐶

quantities names. So, now let us observe these 2 inequalities that we have here. Let us write them

down again. So, we will proceed as follow. We will obtain N first and then . So to obtain NΩ
𝐶

first, we need to do away with first. From the 2, let me flash the 2 equations before you again.Ω
𝐶

So, we have these 2 equations here, which we have converted back into these 2 equations here.
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Now, please note, let us make a few observations about these quantities here. 1 minus delta 1

squared is a quantity less than 1 so therefore, this quantity is going to be greater than 1 for sure.

And minus 1 is therefore going to be positive.

(Refer Slide Time 15:54)

On the other hand, if you look at this quantity here, . So, . And therefore, thisδ
2

2 ≤ 1 1/δ
2

2 ≥ 1

-1 is going to be positive. So, both of these are positive. Now, we can take the logarithm on both

sides. In fact, you could. The logarithm is a non-negative operation. Is that right?
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So, logarithm is a monotonic operation which works on non-negative arguments. In fact, it is

what is called the strictly monotonic. So, there is no place where it stabilizes or flattens. So, if I

take the logarithm on both sides of an inequality of the negative quantities, that inequality is

preserved. So, let me take the logarithm on both sides.

(Refer Slide Time: 17:10)

And let us give the name and . So we have, and of1/(1 − δ
1
)2 − 1 = 𝐷

1
1/δ

2
2 − 1 = 𝐷

2

course, both of them are greater than zero as we have observed.
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So, the first equation that we have is . And the second equation that we have is𝐷
1

≤ (Ω
𝑃
/Ω

𝐶
)2𝑁

.𝐷
2

≤ (Ω
𝑆
/Ω

𝐶
)2𝑁

(Refer Slide Time: 18:14)

Now, if we take the logarithm as we do. We have . And of2𝑁(𝑙𝑜𝑔(Ω
𝑃
) − 𝑙𝑜𝑔(Ω

𝐶
) ≤ 𝑙𝑜𝑔(𝐷

1
)

course . See, what we want to do is to subtract these 2𝑙𝑜𝑔(𝐷
2
) ≤ 2𝑁(𝑙𝑜𝑔(Ω

𝑆
) − 𝑙𝑜𝑔(Ω

𝐶
)



inequalities, to get rid of in a way. And the most convenient thing to do is to reverse this𝑙𝑜𝑔(Ω
𝐶
)

inequality by taking the negative on both sides.
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So, let us reverse the inequalities. So we have and− 𝑙𝑜𝑔(𝐷
1
) ≤ 2𝑁(𝑙𝑜𝑔(Ω

𝐶
) − 𝑙𝑜𝑔(Ω

𝑃
)

. Simple. And now you can just add.𝑙𝑜𝑔(𝐷
2
) ≤ 2𝑁(𝑙𝑜𝑔(Ω

𝑆
) − 𝑙𝑜𝑔(Ω

𝐶
)
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Now we can just add these inequalities. So, is that right? And now does away with. You see

. And this is less than equal to . And why we𝑙𝑜𝑔(𝐷
2
) − 𝑙𝑜𝑔(𝐷

1
) = 𝑙𝑜𝑔(𝐷

2
/𝐷

1
) 2𝑁𝑙𝑜𝑔(Ω

𝑆
/Ω

𝑃
)

have chosen this form is because is greater than . So, this logarithm is positive. is, ofΩ
𝑆

Ω
𝑃

Ω
𝑆

course, the stopband is more than the, the stopband edge is more than the passband edge.

And therefore, has a quantity greater than 1 so its logarithm would be positive. And now theΩ
𝑆

question is what about and ? Remember . Now, is much less, or less𝐷
2

𝐷
1

𝐷
2

= 1/δ
2

2 − 1 δ
2

2

definitely than , . So, is definitely greater than .1/δ
1

1/δ
1

2 𝐷
2

𝐷
1

. is lower than minus 1 squared. So, . And therefore,𝐷
2

= 1/δ
2

2 − 1 δ
1

δ
1

1/δ
2

2 ≥ 1/(1 − δ
1
)2

is greater than as well. And therefore, we have positive quantities on both sides of this𝐷
2

𝐷
1

inequality here. So, we are in good shape. And now, we have a very simple relationship.
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and this is what governs the choice of what is called the order. N is the rate at𝑁 ≥ 1
2

𝑙𝑜𝑔(𝐷
2
/𝐷

1
)

𝑙𝑜𝑔(Ω
𝑆
/Ω

𝑃
)

which the response decays and N has a direct relationship to how much of resource you are

going to require to realize the filter. That is not too difficult to see.



You see, once you have N, it tells you what is the power of s. You see, after all or is s. So aΩ 𝑗Ω

higher power of s means a higher power of z. And a higher power of z means more delays, more

additions, more multiplications. So, N has a direct bearing on the amount of resource that you

require to realize the filter.

(Refer Slide Time: 22:47)

So N, let us make a remark here. N is a reflection of the resource requirement of the filter. The

more the N, the more resources you will need to invest in realizing the filter. And in fact, if you



look just for a minute at the expression for N, then you will see that it is very, very intuitively

clear why this is a reflection of resource.

Let us see how N, now remember N is greater than or equal to some quantity. Now, this quantity

need not be an integer. So, what must you do? You must put here what you call a ceiling

operation. A ceiling operation means the integer just above that. For example, this quantity

works out to be 6.4, then the ceiling for that is 7.

If it works out to be 7.9, then the ceiling is 8. If it works out to be 5.1, the ceiling is 6. So, if it is

a little bit above 5, the ceiling goes up by 1 step. The ceiling is the integer just above. So, N must

be greater than or equal to the ceiling of that quantity. Now, let us look at the quantity itself for a

minute and make some inferences.

You see, it is very clear that N, the requirement of N is going to be more if the numerator is more

or if the denominator is less. Let us first look at the denominator. We need the denominator to be

less. The denominator would be less if and are across to 1 another. If = is far awayΩ
𝑆

Ω
𝑃

Ω Ω
𝑆

from the denominator is more.Ω
𝑃

And therefore, the requirement of order goes down. So, asking for a very sharp transition band

means asking for a higher order. Now let us look at the numerator. In the numerator, – you see𝐷
1

when will the numerator be more? Either when is more or when is less. If is more, you𝐷
2

𝐷
1

𝐷
2

are saying that is more.1/δ
2

2

And that means is less that means you are asking for smaller tolerance in the stopband. If youδ
2

2

are asking for smaller tolerance in the stopband, you are demanding more and therefore, you

have to invest more resources. On the other hand, if . That means is more.𝐷
1

≤ 1/(1 − δ
1
)2 δ

1
2

That means we are reducing the tolerance in the passband.

And that means you are asking for more and therefore, you will have to invest more. Engineering

design whether it is in discrete time system design or in any other branch of engineering, is



always a game of ask for more, invest more. When you ask for more, you have to invest more

and that is true for all the three kinds of asking here.

If you ask for a sharper transition band, you have to invest more. If you ask for a smaller

stopband tolerance, you will have to invest more. If you ask for a smaller passband tolerance,

you will have to invest more. Ask for more, invest more, simple. Now, of course, once you have

completed the choice of N and now you understand why you had a 2N there.

You had a 2N because you took into . So, whatever poles and zeros𝐻
𝑎𝑛𝑎𝑙𝑜𝑔

(𝑠)| | 𝐻
𝑎𝑛𝑎𝑙𝑜𝑔

(− 𝑠)| |
you have in the original H analog are doubled when you go into into𝐻

𝑎𝑛𝑎𝑙𝑜𝑔
(𝑠)| |

. That is why you put 2N there. And anyway, you are considering the magnitude𝐻
𝑎𝑛𝑎𝑙𝑜𝑔

(− 𝑠)| |
squared function, so you need to double and that is N is called the order.
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We will give it a name. N is called the order of the filter. More demand, more order. Now, of

course, finding out is very easy. Finding out is very easy. You see, we could go back to theΩ
𝐶

Ω
𝐶

equation that we have here. Once you found , once you found N, is very easy.Ω Ω
𝐶
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You had this equation here earlier. D1 is greater or equal to and this is true. Now𝐷
1

(Ω
𝑃
/Ω

𝐶
)2𝑁

all that we need to do is to take to the other side in both of them. We have from the firstΩ
𝐶

equation, from this equation
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. And for the second equation, taking .Ω
𝐶

2𝑁 ≥ Ω
𝑃

2𝑁/𝐷
1

Ω
𝐶

2𝑁 ≤ Ω
𝑆

2𝑁/𝐷
1

So, now you have a beauty range in which can lie. Of course, is a positive quantity. So, ifΩ
𝐶

Ω
𝐶

you know, to the power 2N, you can find by taking the 1 by 2 nth root or you can useΩ
𝐶

Ω
𝐶

logarithm. That is not a problem.
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But what we can see from here is that to the power 2N must lie between to the power 2NΩ
𝐶

Ω
𝑆

by D2 and to the power 2N by D1. And any other satisfying this will do. Any whichΩ
𝑃

Ω
𝐶

Ω
𝐶

satisfies this inequality will do. You may wonder why you got a range of which is acceptable.Ω
𝐶

That is because N took a ceiling operation.

So, N took a ceiling operation, you introduce some amount of tolerance there and therefore, you

got a range of which is possible. If that, when you had the expression for N, if the right handΩ
𝐶

side happen to be an integer then you would get no tolerance, you would get a fixed value of .Ω
𝐶

But because you have got a ceiling operation, you have introduced some tolerance. Therefore,

we have a range of to choose from. Any which satisfies this inequality will do. Is thatΩ
𝐶

Ω
𝐶

right? So yes, is there any question?

Professor: Well, the question is does lie between and ? Well, that is not necessary. ItΩ
𝐶

Ω
𝑃

Ω
𝑆

depends on the tolerances that you have given. is the half power point. If your passbandΩ
𝐶

tolerance is more than half point power, of course lies inside the passband. So is only theΩ
𝐶

Ω
𝐶

half power point. That is all that can be said. Anyway, with this then we come to the end of this

lecture. In the next lecture, we will proceed further with to complete the design of the

Butterworth filter. Thank you.


