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Review of properties of DTFT, IDTFT 

So, warm welcome to the 11th lecture on the subject of digital signal processing and its 

applications. We recall that the previous lecture was devoted to an introduction and a discussion 

on the discrete time Fourier Transform. Let us quickly recapitulate one or two important 

conclusions that we drew in the previous lecture and then proceed to look at some more properties 

of the discrete time Fourier Transform. We had seen that if you have an arbitrary sequence x[n]. 
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And if the summation n going from minus to plus infinity x[n] e raised the power minus j ω in 

converges, we call it the discrete time Fourier Transform of the sequence x[n] denoted by Capital 

X as a function of ω. Here, the dependence is on the variable ω, and you will recall that ω is a 

continuous variable. It can take on values continuously all over the real axis. However, there is 

periodicity in X(ω) right. So, you will recall also that we derived.  
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That X(ω) is equal to X (ω + 2π) for all ω. And therefore, there is a periodicity in X(ω) of 2π. We 

also saw that the prime interval over which X(ω) needs to be considered is the interval from -π to 

π. So, what we call the principal interval. 
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It is adequate for us to look at the discrete time Fourier Transform, over this principle interval of  

-π to π, right. Because it would then be repeated at every multiple of 2π. What is more is we had 

also seen the inverse discrete time Fourier Transform.  
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We had seen that you can reconstruct x[n]. It is from X(ω). In the following way. Further we had 

also looked at a very important property of convolution, we saw that if you convolve two 

sequences, each of which has a discrete time Fourier transform. 

And if the convolution also has a discrete time Fourier transform. And there is a beautiful 

relationship between the convolution and the two sequences in the Fourier domain or in the 

frequency domain, namely when you convert two sequences their discrete time Fourier transforms 

are multiplied. All right.  
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So, we showed that if 𝑥1 is convolved with 𝑥2. And if 𝑥1,2 respectively, have the DTFT’s Capital 

𝑋1and capital 𝑋2, then 𝑋1convolved with 𝑋2has the DTFT 𝑥1 into 𝑥2 that is what we proved last 

time. We also started looking at some of the properties of the discrete time Fourier transform. We 

saw that the discrete time Fourier transform, viewed as an operator is linear right. So, we saw that. 

If you think of the DTFT as an operator. 
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Then 𝑥1,2 being operated upon by the DTFT to give capital 𝑋1,2 implied that 𝛼𝑥1 + 𝛽𝑥2 to have the 

DTFT 𝛼𝑋1 + 𝛽𝑋2. What is more, we have also seen that if x had the DTFT capital X.  
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Then if we time reverse. It leads to a frequency reversal too. Or essentially frequency negation. 

That means every positive frequency becomes a corresponding negative frequency, and that is 

obvious because time reversal amounts to rotating in the opposite direction and therefore every ω 

is replaced by minus. Of course, we also came to the same conclusion algebraically.  

Now, we take further the discussion of some properties, for example, we ask what happens when 

the complex conjugate? So, before that, let me ask if there are any questions at this point before 

we proceed. Are there any doubts or questions that need to be clarified before we proceed to discuss 

a few more properties? Yes, there is a question. That is a good question. So, the question is, we 

had said that, you know, the whole idea of reconstructing xn, in fact, let me go down to the inverse 

DTFT. 
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The question is, when we discussed this idea of inverting the DTFT, we said the idea is that you 

take each component, multiplied by a so-called unit vector in the direction of that component. And 

instead of adding now, you integrate overall components because these components are a 

continuum ω is a continuous variable.  

And the question is, how could we all know, how could we talk of a unit vector in the context of 

𝑒𝑗𝜔𝑛since 𝑒𝑗𝜔𝑛 does not have magnitude one of that matter, it cannot be made to have magnitude 

1. Now let me clarify exactly what we are saying here. What we are saying is that when we use 

this idea of multiplying a component by a unit vector, it is of course true for a finite dimensional 

space. 

But here we are talking about an infinite dimensional space so we can take inspiration from that 

idea, but we may not be able to use that idea exactly. There has to be a slight modification. And 

the modification is that here. What we assume happens is that, you see, we are assuming all the 

while, remember that X(ω) converges, that means there is an infinite summation that converge that 

converges that need not happen. So, under convergence I mean, under X(ω) converging. 

What we are saying is all the information has been retained in the X(ω), ω going from -π to π and 

the approach that you would use to reconstruct a similar to what you would do for finite 



dimensional space that means take the component and multiply it by a so called unit vector in that 

direction and add overall such components.  

Now, unfortunately here, multiplication of 𝑒𝑗𝜔𝑛by 
1

2𝜋
does not really make it a unit vector. But 

what we are doing here is akin to what you would do in a finite dimensional space, namely multiply 

a component by a unit vector and add over all such components. 

So, the idea is similar, but the idea of a unit vector cannot be taken exactly from a finite dimensional 

space, to an infinite dimensional space here. Although what he is saying is that essentially 

𝑒𝑗𝜔𝑛/2𝜋really a unit vector its magnitude, or if you take the sum squared of the magnitude of all 

the samples, it does not converge.  

But the idea that you can multiply components by vectors in different directions suitably 

normalized is being employed here. And what we did later was to, you know, to take inspiration 

from that idea, but to derive the factor 1/2π exactly by algebra. Later on, we used algebra to come 

exactly to the conclusion that you needed a factor of 1/2π there. 

So, it is not correct really to call it a unit vector. Rather, it may be more, more appropriate to say 

that we take inspiration from that idea of multiplying components by unit vectors and adding 

overall components. But the conversion of a vector to a unit vector essentially involves 

normalization by a constant. We allow that normalization by a constant using the factor 1/2π here. 

That is the way to understand this.  

So, when you go from finite to infinite dimensional spaces, there are certain patches of this kind 

which you need to deal with. So, for a greater or deeper understanding of this, I would recommend 

going into functional analysis. But that is not the objective of this course. What we are doing here 

is to take inspiration from that idea. 
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And we know that you probably would require a factor 𝜅0 here. We saw from algebra that factor 

turns out to be 1/2π. We later on prove this relation exactly. We later on derived this you know 

inverse exactly. And there we saw that the factor of 1/2π was required, right. That is the way to 

understand this.  

So, in general, it is a good idea to use geometric insights to understand several signal processing 

ideas, but when using geometrical insights, one must be careful to distinguish between certain 

things that happen, obviously in finite dimensional spaces, which do not generalize exactly to 

infinite dimensional spaces. 

But what you know, in finite dimensional spaces gives you an idea of what to expect in an infinite 

dimensional space. And you do not have to tune or to correct what you expect by looking at the 

basic algebra. Is there any other questions? All right, so in that case, we will proceed then with the 

discussion of some more properties of the discrete time Fourier Transform namely. Let us look at 

what happens when the complex conjugate. 
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So, if you know that the discrete time Fourier transform of x[n] is capital X(ω), what is the discrete 

time Fourier transform of 𝑥[𝑛]is the question that we would like to ask. Now, that is easy to do. 

Let us calculate the discrete time Fourier transform of this it will be∑+∞
𝑛=−∞ 𝑥[𝑛]𝑒−𝑗𝜔𝑛.  

And of course, we can rewrite this. See, what we do is essentially we want to take the bar all above 

here. So, you know how would we do that? You could, of course, remove the minus sign and take 

the conjugate here. So, this is the same as 𝑒𝑗𝜔𝑛
 and therefore, I have. 
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Now, of course, when you take a sum of complex conjugates, it is the complex conjugate of the 

sum. So, I have x[n]. Now here I can rewrite this as ∑+∞
𝑛=−∞ 𝑥[𝑛]𝑒−𝑗(−𝜔)𝑛, which turns out to 

be𝑋(−𝜔). So, complex conjugating without time reversal. Amounts to taking a negation on the 

frequency axis and complex conjugating once again. And this leads us to a very interesting 

conclusion. 
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If I take x[n] to be a real sequence. Then 𝑥[𝑛] is equal to x[n], that is what you mean by real, and 

that means 𝑋(𝜔) = 𝑋(𝜔) . So, what we are saying is if you take corresponding frequencies, ω and 

minus ω, they are related by complex conjugation. That means on the ω axis, if I take 

corresponding positive and negative frequencies, the discrete time Fourier transforms are the 

complex conjugate of one another. Now, what is the physical interpretation of this? You see, if 

you look at how the signal is formed, so to speak, if you look at, look back at the inverse DTFT.  
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It says that 𝑥[𝑛]  =  
1

2𝜋
∫

𝜋

−𝜋
𝑋(𝜔)𝑒𝑗𝜔𝑛𝑑𝜔. Now, of course we reinterpret this as before as saying 

that we take so many different ω's actually all the continuum of ω’s for ω going from -π to +π for 

each of these ω’s you can think of a pair of  𝜔0 + 𝜔1. 

The other minus 𝜔0. They come together. So, X[𝜔0] contributes 𝑋[𝜔0]𝑒𝑗𝜔0𝑛 and 𝑋[𝜔0]𝑒𝑗𝜔0𝑛 

X(𝜔0) contributes 𝑋[−𝜔0]𝑒 −𝑗𝜔0𝑛. So, you have a corresponding complex, rotating phasor, one 

rotating clockwise and the other rotating anticlockwise with respective frequencies 𝜔0 and −𝜔0. 

And what we are saying is that the corresponding components are complex conjugates. They have 

the same magnitude but the opposite phase or the opposite starting angle. In other words, what we 

are saying is. 
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If you plot X(𝜔0) and X(−𝜔0). They would look like this. They have the same magnitude. And 

they have exactly the opposite starting angle. This is the symbol for. Angle or starting angle of 

phase. You can visualize. If there are two vectors if there are two rotating phases like this beginning 

here at t = 0 and here, and if this one rotates in a counter clockwise direction. And this one in a 

clockwise direction, they will always add up to a sinusoid, a cosine wave. 

Their imaginary paths would always cancel and their real parts would enhance or be doubled. That 

is what we are saying here, so every property of the discrete time Fourier transform also has a 

corresponding interpretation that we must understand. It means every pair of corresponding 

positive and negative frequencies have the same magnitude, but opposite starting angle. And that 

is illustrated very clearly from how we see them coming together to form a real signal. 

 

 

 


