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Very good morning, and a warm welcome to the 7th lecture on the subject of Digital Signal

Processing and its Applications. We will spend a few minutes in recalling what we did in the

previous lectures. In the previous lectures, we were looking at what an LSI system is

characterized by. So, we noted that for a linear shift-invariant system, it is adequate for us to

know what is called the impulse response or the response of the LSI system to a special chosen

input namely the unit impulse.

Once we know the output of an LSI system, given a unit impulse input, we know everything

about the system. In other words, we know what the output could be for any input. And in fact,

we proved last time that the output, the input, and the impulse response are related by an

operation called convolution. The convolution of the input sequence with the impulse response

sequence results in the output sequence, convolution is an operation in its own right.

What I mean by that is, independent of the fact that it is an important operation in the context of

linear shift-invariant systems. convolution can be thought of as an operation between two

sequences, irrespective of where the two sequences come from. In fact, there are reasons why we

may want to think of convolution in that manner. And let us take a couple of situations where we

need to deal with convolution as an operation independent of the context of LSI systems. In fact,

let’s take a situation where we have cascaded two LSI systems.



(Refer Slide Time: 02:30)

So, let us consider a situation where we have an input x[n] being applied to one LSI system, lets

call it S1 with impulse response h1[n]. The output of which goes to a second LSI system. Let us

give it to the name, give to it the name S2 and here the impulse response is h2[n] and this results

in the output y[n]. This is called a cascade interconnection, a cascade or a series connection of

two LSI systems.
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Now, it appears that if we use the symbol * to denote convolution, then



𝑦[𝑛] = (𝑥[𝑛] * ℎ
1
[𝑛]) * ℎ

2
[𝑛]

So, here we have two convolution operations, following one another to relate the input to the

output. And there are several questions that we can ask. One question is what would happen if I

interchange the order of these systems? So, if I were to interchange S2 with S1, would it yield

something different. The other question that we need to ask is, can I replace this combination,

this cascade combination by one single LSI system. So, let us put these two questions down.
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Question 1, what would happen if I interchange S1 and S2? And question 2, is there one system,

let us call it S, which can replace S1 and S2 equivalently. Now, we will answer the second

question first.
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In fact, the answer to the second question would emerge from trying to find out whether I can

change the location of the bracket. What I mean by that is, suppose it were to be true that means,

I could replace S1 and S1 in cascade by a single system S perhaps with impulse response h[n].

Obviously, the output would be and we need to find out this h[n]. and what do we𝑥[𝑛] * ℎ[𝑛]

have, y[n] to be actually:



𝑦[𝑛] = (𝑥[𝑛] * ℎ
1
[𝑛]) * ℎ

2
[𝑛]

So, my difficulty is the place where the bracket lies. We shall show now that this is equal to

. In other words, we can change the position of the bracket for𝑥[𝑛] * (ℎ
1
[𝑛] * ℎ

2
[𝑛])

convolution. We shall prove this. This is what we shall now prove and this property is called the

property of associativity.
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Now, we are looking at convolution in its own right, Associativity of convolution. So, in general,

what we need to show is that and here we do not necessarily imply x[n], h1[n] or𝑥[𝑛] * ℎ
1
[𝑛]

h2[n] to be inputs or impulse responses, they are any sequences really. Now, lets take the

left-hand side. I should indicate to you the modus operandi of the proof and I shall leave some

steps of the proof to you to complete, is that right?
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The modus operandi of the proof or the method the process to be followed to prove this is as

follows, consider the left-hand side. Now, , can of course be written as𝑥[𝑛] * ℎ
1
[𝑛]

𝑘=−∞

∞

∑ 𝑥[𝑘]ℎ
1
[𝑛 − 𝑘]

Essentially this is a function of n. This is not the whole left-hand side, I mean, this is just a part

of it, so I am just, let me, so we are processing the left-hand side. That is what I mean by putting

this double line here, this is not done, we have just written one part of the left-hand side. Now,

we will complete this.
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So, we have to be(𝑥[𝑛] * ℎ
1
[𝑛]) * ℎ

2
[𝑛]

𝑙=−∞

∞

∑ (
𝑘=−∞

∞

∑ 𝑥[𝑘]ℎ
1
[𝑙 − 𝑘])ℎ

2
[𝑛 − 𝑙]

now you see, here, I need to bring in one more variable. So, I won’t write n now, this is k, but

here, I need to introduce one more variable, that is called l, is that correct? This is the expression

this is the complete left-hand side. Any doubts so far? Yes.
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Now, we write the right-hand side. And the right-hand side is, of course, .𝑥[𝑛] * (ℎ
1
[𝑛] * ℎ

2
[𝑛])

And this is very clearly

𝑘=−∞

∞

∑ 𝑥[𝑘](ℎ
1

* ℎ
2
)[𝑛 − 𝑘]

I use this to denote the sequence obtained by convolving h1[n] and h2[n]. This sequence

evaluated at n-k, whatever that sequence be. Now, when you evaluate that sequence at n-k, we

know how to write an expression for the (n-k)th sample of that sequence, we need to use a

summation to write that sample as well, the (n-k)th sample of the convolution can be obtained as

follows.
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𝑘=−∞

∞

∑ 𝑥[𝑘](
𝑚=−∞

∞

∑ ℎ
1
[𝑚]ℎ

2
[𝑛 − 𝑘 − 𝑚])

So, what I need to do is to now bring these two expressions together here.
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I have this expression for the right-hand side, and I have this expression for the left-hand side

here, and I need to compare them. Lets write them on the same page.
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With RHS, which is
𝑘=−∞

∞

∑
𝑚=−∞

∞

∑ 𝑥[𝑘]ℎ
1
[𝑚]ℎ

2
[𝑛 − 𝑘 − 𝑚]

And now it is very clear to us how to prove the equivalence of these two expressions. You see,

what we really need to do is to make a substitution of variable here, if we replace the variable l-k

with the variable m, the summation of k is common to both.

As far as the summation of l here is concerned for any fixed k, you remember, the summation is

that means the summation is on all integers k and all integers l in the left-hand side.∀ 𝑘 ∈ ℤ

And all integers k and all integers m, on the right-hand side is that right? And x[k] is the term

common. Now, if we replace m for l-k, then it is very clear that n-l, what we need to do is to

replace l.

So, l is then m+k. And, of course, now it is very easy to see that n-l would then become n-m m-k.

But the only thing we need to justify is that the summations are also correct. And that it is very

easy to see. You see, k is as it is k runs independently from to . And the question is, what− ∞ ∞

happens to m? For any fixed k, when l runs over all the integers, m also runs over all the

integers.

So, m, which is l-k here, runs over all the integers, when l runs over all the integers, or vice

versa. You see, for a fixed l and m would concurrently run over all the integers, of course, not the



same integer. But they will run over all the integers independently. And therefore, one can

replace this summation,

𝑘=−∞

∞

∑
𝑙=−∞

∞

∑ 𝑥[𝑘]ℎ
1
[𝑙 − 𝑘]ℎ

2
[𝑛 − 𝑙]

by the double summation on k and m also, overall, the integer.

𝑘=−∞

∞

∑
𝑚=−∞

∞

∑ 𝑥[𝑘]ℎ
1
[𝑚]ℎ

2
[𝑛 − 𝑚 − 𝑘]

And therefore, the left hand and the right-hand sides are equal and that proves the property of

Associativity of convolution.

Now, we need to spend a minute in ensuring that we have no doubt about this proof. Do we have

any doubt about the proof? Because it is a very important conclusion that we have drawn. So, we

have concluded that convolution is associative and that answers our first question.

(Refer Slide Time: 17:23)

Convolution is Associative. This is a more general conclusion we have drawn. And of course, its

implication for the context of LSI systems is that S indeed exists, the equivalent system exists

and that equivalent system has the impulse response, . Very interesting. Now, we need toℎ
1

* ℎ
2



answer the second question. The second question is, can I interchange the order? And that

amounts to asking, see now, in a way, we have also got an interpretation.

We know that together, the impulse response of equivalent system is . And if you couldℎ
1

* ℎ
2

interchange the order, then the impulse response to the . So, in other words, we are askingℎ
2

* ℎ
1

whether convolution is commutative.
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In other words, would , be equal to . Now, please note that here, I am abusingℎ
1

* ℎ
2

ℎ
2

* ℎ
1

notation a little bit, by suppressing the dependence on the integer index, I am just writing. And

anyway, in a way, it is not too much of an abuse because ultimately, convolution is an operation

between sequences not between numbers. It is not too much of an abuse of notation. So, let us

answer this question. Once again, let us look at the left-hand side first.
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So, left-hand side is essentially

𝑘=−∞

∞

∑ ℎ
1
[𝑘]ℎ

2
[𝑛 − 𝑘]

.And here again, we make a very simple substitution, we substitute n-k by l and we note, that k

running from to leads to l running from to for fixed n. This is easy to see, for a− ∞ ∞ − ∞ ∞

fixed n, if k runs over all the integers and n-k, which is l also runs over all the integers. And

therefore, we can make a replacement here we can replace m-k by l. And that is very easy.
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What we want on the right-hand side, so replace n-k by l, which means k is n-l. And of course,

then we have

𝑘=−∞

∞

∑ ℎ
1
[𝑛 − 𝑙]ℎ

2
[𝑙]

which is essentially the right-hand side. And therefore, we have concluded that the left hand and

the right-hand sides are equal and convolution is commutative. Yes, there is a question.

Student: Sir, when k runs from to (())(20:43).− ∞ ∞

Professor: Yes. So, I will repeat the question. The question is, we said that, in this case, for

example, when k runs from to , n minus k would invert, so to speak, or in other words, it− ∞ ∞

would seem to run from to . Well, that is correct. I mean, what I am trying to say is, the∞ − ∞

set of integers, the entire set of integers is covered by k and it is also covered by l.

Though not necessarily in correspondence. That means when k is at a particular integer, l is not

the same integer, that is true. But there is a one-to-one correspondence. So, for every k there is a

unique l, and for every l there is a unique k. And not only that, the entire set of spans, when you

are dealing with infinite sets, you have to be careful.

So, in fact, the question has raised an important point, when you are dealing with infinite sets,

one must be sure that the infinite sets are equivalent, I mean, infinite sets, you cannot simply

conclude they are the same unless you can draw correspondence. That means, you must be able



if you see, if you claim that two infinite sets are the same or that are equal, then you must be able

to draw a one-to-one correspondence between those two sets, I must be able to make handshakes

between the elements of the two sets and here you can do that, you can make a handshake

between elements of the set k and elements of the set l, a one-to-one handshake.

So of course, the handshake is not between the same elements, but between different elements. Is

that clear? Are there any other questions about this proof? We must, it is very important that we

clarify questions as we go along. Otherwise, it would lead to gaps in understanding and

weaknesses on foundation as we proceed and a weak foundation leads to cracks on the upper

storey, upper storeys, upper floors, is that right? So, foundations must be strong and then that

does not allow cracks to seep in on the upper floors of a building. So, are there any other

questions on the proof so far? Yes, is the proof very clear to everybody?
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So, what is our conclusion? The conclusion is that convolution is commutative. And in

particular, what does it mean for LSI systems? The order of a pair of LSI systems in cascade can

be interchanged, that answers question one. Now, I leave it to you as an exercise to prove the

following.
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Prove that we have, whenever we have multiple LSI systems in cascade. Let us say N, capital N

subsystems in cascade. Any interchange, any reordering is permissible. In other words, the order

does not matter. If you have a set of LSI systems in cascade, not just two of them, any number of



them, then any reordering of those LSI systems in cascade does not influence the overall

input-output relationship and to prove this you shall require both commutativity and associativity

of convolution. So, please use commutativity and associativity to prove this by mathematical

induction or any other method that you choose, is that right? So, I leave, give this to you as an

exercise.


