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So welcome to 7th lecture. Till now we have covered vector calculus and electrostatic fields. For 

the next two and half lectures, we will see magnetic fields and time-varying fields which are very 

important for this course because most of the time we are interested in calculation of magnetic 

fields in electromagnetic devices. So when we talk of magnetostatics, we start with Biot-Savart 

law.  
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For a line current I shown in the following figure, the value of magnetic field intensity dH at a 

point P which is at a distance R is given by the expression: 

 ,  

 



The angle 𝛼 is denoted in the above figure. In the vector notation, the expression of dH  is modified 

as:  

 

The above expression represents the well-known Biot-Savart law. Now the point to note here is 

that similar to line current you can have surface and volume currents as shown in the following 

figure.  

 

In all the three cases given in the above figure, the overall unit of a current element is A-m . For 

example, the unit of Idl is A-m. In the above figure, for KdS, K is the surface current density, when 

does surface current come into picture?  When a high-frequency excitation is there and skin depth 

is very small compared to the thickness of the conductor, current tries to remain at the surface and 

then you have what is known as surface current density. We will discuss a little bit more about this 

concept later.  

Surface current density K is associated with the surface shown in the above figure. And the 

corresponding unit of K is A/m because it flows through a very thin surface, so one dimension is 

not there. So the over all unit of KdS is A/m × m2 and is again A-m. The third type of current which 

we commonly use in field calculations is J which  is called as volume current density and its unit 

is A/m2. The overall unit is again A-m. For all the three quantities, the overall unit is   A-m . So 

always remember, I in Idl is a scalar quantity, dl is the vector, so dl is the one which gives the 

direction to the current element, whereas in the other two cases, K and J are vectors. 

Next consider a current element, which is like an infinite line current as shown in the following 

figure.  



 

The magnitude of the vector H at point P is given by the following expression 

 

In the above expression, 𝛼2 and 𝛼1  are the angles as shown in the above  figure. And if it is an 

infinite line current, then 𝛼2 and 𝛼1 will tend to 0 and 180o respectively.  Then the above expression  

reduces to the following well-known formula  

 

Always remember, E in electrostatic or electricity is equivalent to H in magnetic fields or 

magnetics. 

We saw in electrostatics, 𝐸 ∝ 1/𝑅2. But here in the above expression of H for an infinite current 

𝐻 ∝ 1/𝜌 or 1/𝑅. But for a finite current element, H is always ∝
1

𝑅2. The question is if it is an 

infinite charge distribution what is the relation between and E and R? If it is an infinite line charge, 

then E has a 1/𝑅  dependence.  

Another point which I have also explained earlier is ∇ × 𝐇 = 𝐉 which is the point form of Ampere’s 

law and the integral form of this equation is  

 

Since ∇ × 𝐇 in general is non-zero, this field will be a non-conservative field. We have earlier seen 

what is the difference between conservative and non-conservative fields. So  this is an example of 

non-conservative field. 
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Now coming to magnetic flux density, we know 𝐁 = 𝜇0𝐇 in case of free space. In materials, we 

will see later how this expression of B gets modified and how  relative permeability (𝜇𝑟) comes 

into picture. Now there is often confusion between what H represents and what B represents. So 

one can say that H represents a current source and the unit of H is A/m. So you can say it is a 

macroscopic representation of magnetic field, whereas you can visualize B at a point and you 

cannot visualize H at a point. So you can say that H is representing the current source, which is 

producing it. So B definitely can be visualized at a  point, we say flux density at this point is so 

much Tesla which represents Webers (flux) passing through a cross-sectional area.  

That is why B can be called as the microscopic representation of magnetic field. This is a very 

subtle difference between the two. And only one of them is good enough to represent magnetic 

fields if it is free space. Also, in free space, if one is known, other is automatically known. So 

Gauss’s law of magnetics is represented as  

 

 If you apply divergence theorem to the above equation, then you will get the second Maxwell’s 

equation in point form as given below 



 

 This equation tells that there are no magnetic sources or sinks and flux lines are always closed. 

But we should always note that ∬ 𝐁 ∙ 𝑑𝐒 
 

𝑆
gives you the flux crossing the surface S. Moment you 

make it closed surface integral, it becomes 0. Now, ∇. 𝐵 = 0 and we know that divergence of curl 

of a vector is always 0. So then we can define B vector as curl of a vector, say 𝐁 = ∇ × 𝐀 . What 

is this A? we will see in the next slide. Actually by using 𝐁 = ∇ × 𝐀 and the following expression 

of B   

 

 you can then derive the expression for A as given below. 

 

Again, as I mentioned to you in most of the equations where I appears, involving vectors, I will be 

accompanied by dl vector which gives the direction of current. If you want to represent the same 

equation in terms of volume current distribution, then this Idl will get replaced by Jdv where J is 

the vector, dv is just a scalar.  
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Now we come to a very important quantity in electromagnetics, which is called as magnetic vector 

potential (A). Because you have scalar potential V in electrostatics and then E  can be calculated 

in terms of V as 𝐄 = −∇𝑉, but in magnetics, you have only B and H fields and earlier there was 

no other quantity in terms of which you can calculate B and H fields. So using Maxwell’s 

equations,  researchers derived the magnetic vector potential (A) and later on, I will explain you 

this ‘potential’ is not a correct word , because potential means it is like a scalar. 

But this A is a vector quantity. Maxwell originally called this magnetic vector potential as electro 

kinetic momentum vector. Actually, it should have been called as a vector, but this magnetic vector 



potential word has been very commonly used in literature, and most of us are used to it now. But 

we should remember that it is a vector and as Maxwell correctly termed it as  electro kinetic 

momentum vector. When we discuss time-varying fields, we will see how this quantity is a 

momentum vector. We know ∇ × 𝐇 = 𝐉 and using 𝐁 = 𝜇0𝐇, this equation can be recast as 

∇ × 𝐁 = 𝜇0𝐉 and then you can replace B with ∇ × 𝐀  and then applying the vector identity for 

∇ × (∇ × 𝐀)  results in the following equation 

 

Remember that we are still dealing with vacuum or free space  and we are not describing magnetic 

materials yet. So we are in free space that is why 𝜇0 is appearing. Later on, we will bring in 𝜇 =

𝜇0𝜇𝑟 .Till now we have expressed B as curl of A,  by definition , a vector is completely defined if 

its both curl and divergence are defined. 

Now we have defined only curl of A vector which is nothing but ∇ × 𝐀 = 𝐁. We have not yet 

defined divergence of A. So we will now define ∇ ∙ 𝐀 = −𝜇0𝜖0
𝜕𝑉

𝜕𝑡
. Again, this is free space that is 

why here 𝜇0 and 𝜖0 are appearing. And the above definition of divergence of A is called as Lorentz 

gauge. Now, this is not an arbitrary definition. It can be proved that this Lorentz gauge is consistent 

with the continuity equation. This derivation is available in standard textbooks and is  

straightforward. So this Lorentz gauge is consistent with the continuity equation and now, this A 

gets completely defined because we have defined curl of A which is B and divergence of A as 

given by the following expression.  

∇ ∙ 𝐀 = −𝜇0𝜖0

𝜕𝑉

𝜕𝑡
 

So A as a vector is completely defined. Now, at low frequencies the right hand side term of the 

above equation will be almost negligible because the frequency is small, the  
𝜕𝑉

𝜕𝑡
 term in the above 

equation can be written as  𝑗𝜔𝑉 in the frequency domain. And since this 𝜇0(= 4𝜋 × 10−7) and 

𝜖0 = (8.85 × 10−12) are very small numbers, their product is also small and the frequency is 

small, the term −𝑗𝜔𝜇0𝜖0𝑉  is going to be a very small number. So that is why  the right hand term 

of the Lorentz gauge is 0 at low frequencies, so ∇ ∙ 𝐀 becomes 0 at low frequencies and this is 

called Coulomb gauge. That is why in low frequency electromagnetics, ∇ ∙ 𝐀 is always taken as 0. 



When you are dealing with high frequency electromagnetics involving wave propagation, antennas 

and whatnot, ∇ ∙ 𝐀 is taken as the expression of Lorentz gauge. This is a difference which 

differentiates low-frequency and high-frequency electromagnetic field computations. Now if we 

all agree that this is a consistent theory, then we will take ∇ ∙ 𝐀 = 0. And then we obtain  

 

 Now compare the above  equation with Poisson’s equation in electrostatics, which is ∇2𝑉 =

−𝜌𝑣/𝜖0. Again this is free space and the corresponding expression for V is  

 

Now the expression for V and the expression for A that we saw in the previous slide, you can see 

the similarity in terms of 𝜇0 and 𝜖0. If one is in numerator, other will be in denominator. We will 

always find that for magnetic fields 𝜇0𝐼𝑑𝐥  appears, and for electric fields 𝜌𝑣𝑑𝑣/𝜖0 appears . For 

magnetic field quantities, 𝜇0 is in numerator, and for electric fields 𝜖0 is in denominator. So you 

can see, 4π is common and there is a similarity between the expressions of A and V. So now this 

∇2𝐀 = −𝜇0𝐉 is a vector Poisson’s equation that can be split into three scalar equations as given 

below.  

 

A little bit more understanding of magnetic vector potential we will do.  Of course, we have 

understood its expression and genesis from the definition of its divergence and curl. But let us 

understand in space how it works.  



 

In the above figure, I is the line current. If  I is directed vertically along this dl vector, see again, 

dl  has shown purposely as a vector and this defines the direction of current.  

So we should be consistent whenever we show something, we should always remember that these 

small things make our understanding clear. For the current element in the above figure, magnetic 

vector potentials at any point in space are also directed in the direction of current because on the 

right hand side of the expression of A that we have seen in the previous slide, you have only one 

vector i.e, dl, so the direction of dl will be the direction of A. So A is also vertically directed and 

the magnitude of A is reducing as you go away from the source because it is inversely proportional 

to the distance from the source.  

Now here ∇ × 𝐀 ≠ 𝟎, obviously because ∇ × 𝐀 = 𝐁. But how do we understand it? Here suppose 

we take the current in the above example as in z direction, then A is also in z direction and you 

can see that Az is changing in space with x.  If we apply ∇ × 𝐀 for this case, then B is given as 

 

Now here we are talking about two-dimensional approximations in which current is in z direction 

and the B field will be in xy plane. Here moment Az is changing with x, that means at least one of 

the components of B is going to be non-zero, that means B exist. 

So here in the above figure, A is changing with x in zx plane. After 90 degrees rotation of this zx 

plane in 𝜙 direction , you will have Az varying with y and at any intermediate plane between the 

above-discussed planes Az will vary with both x and y. So that clearly helps us to understand the 

magnetic vector potential and its relation with B and how the A vector varies with distance from 

the source.  
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Now, the above slide is very important for 2D FEM calculations that we are going to see 

throughout this course. Our course will be dominated by 2D magnetic field computations and that 

is why this slide it is quite important. Here 𝜓 denotes flux, which is calculated by   

 

 Remember again, I am repeating ∯ 𝐁 ∙ 𝑑𝐒
 

𝑆
= 0. ∬ 𝐁 ∙ 𝑑𝐒 

 

𝑆
 is equal to the flux crossing that 

surface. Now you replace B in the above equation by ∇ × 𝐀 and then you apply Stokes’ theorem. 

You will get the expression of 𝜓 as given below  

 

Now if the flux 𝜓 is in Webers and unit of dl is in meters, so the unit of A becomes Weber per 

meter (Wb/m). The  contour  integral of A around any closed path is equal to the flux passing 

through the area enclosed by the path. This is what is described by the above equation. Now again 

let us understand what is happening in space.  



 

In the above figure, you have current I again in z direction. Here the corresponding coordinate axis 

is also marked, in which z is vertically up, x is in the horizontal direction, and y is going into the 

paper.  The directions can be obtained by placing the fingers of the right hand along x, and you 

turn them around from the x to y, you will get the z direction.   

Again, you have the current source directed along the z direction as shown in the above figure. So 

you have A1 and A2 at two points, which again will be in z direction as shown in the figure. Then 

we are just taking a contour as indicated in the figure . If you take the top view of the system  in 

the xy  plane, you will see the current source just as a dot. If the current is dot and  it  is coming 

out, then the direction of field vectors are as per the right hand rule, which defines that thumb is 

pointing in the direction of the current and the direction of field will be given by the fingers. So 

the field will be as shown in the following figure.  

 

In the above figure, the plane of the paper is xy and z comes out of the plane. So it is basically 

governed by the right hand rule.  

So now consider the above figure with A1 and A2 is represented in 2D as shown in the following 

figure. 

 

In the figure, I have shown the current just by a dot. For the same 2D representation in the previous 

figure,  I have shown the field. Consider magnetic vector potential at any two points in the xy plane 



as A1 and A2. You should remember the flux is always associated with the corresponding area 

through which it flows. Now, the area through which the flux (shown in the previous figure) is 

flowing, has one dimension along the z axis. So here, flux really does not flow through this paper 

surface. You have to always visualize that flux is crossing some surface. So the surface for this 

example is along  zx plane as shown in the following figure.   

 

So suppose current is in z direction, then flux will cross zx plane or the corresponding surface 

parallel to this plane or if you turn the surface by 90 degrees in 𝜙 direction, then it will be zy. So 

always it is crossing some surface.  And the flux crossing the surface is given by the above equation  

and 𝐚̂𝑛 in the equation is unit normal to the surface.  

Again, I mentioned in one of the previous lectures that the direction of this 𝐚̂𝑛 will be decided by 

the corresponding contour integral, because this is an open surface, which has two possibilities  for 

𝐚̂𝑛, for the given case it could be either 𝐚̂𝑦or −𝐚̂𝑦. But now we are taking some contour integral, 

so the direction of the contour integral decides the direction of the unit normal for that open surface. 

So I am again repeating some of these points as they are very important for the general vector 

calculus point of view and visualizing electromagnetic field distribution in space. 

Now in this case, it will be 𝐚̂𝑦 for the xz  plane surface shown in the above figure. So the expression 

of flux is  

 

Now if you evaluate the integral for the contour shown in the above figure, the result would be  

 

 where, l is the length of the segment of the contour directed in z direction. The other two segments 

in the x direction will not contribute because those lengths are perpendicular to A. So 𝐀 ∙ 𝑑𝐥 will 



be 0. And in one of the two segments along z, A and dl are oppositely directed. So that is why you 

have got a minus sign.  

So then you have got 𝜓 = (𝐴1 − 𝐴2)𝑙 for 2D approximation. Again in one of the previous lectures 

we discussed that whenever we do 2D approximation, we take 1 m depth in z direction and that is 

why, if we do that, then the value of 𝑙 in the above expressionwill be 1 m in z direction. And then 

the expression of 𝜓 is will just reduce to 𝐴1 − 𝐴2. Now coming to the following figure again,   

 

if you take any 2 points on one of the contours as shown in the above figure, these points 1 and 2 

are at same distance from the current source. So then 𝐴1𝑧 − 𝐴2𝑧 will be equal to 0, because no flux 

is crossing the surface. That is why these contours are called as equi-A or equipotential contours 

or flux contours. Because the magnitudes of A1 and A2 are same, no flux crosses the surface formed 

by lines along z direction passing through these two points, in fact flux is going tangentially at 

these points. 
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Another important point is that flux can be set up by using only boundary conditions in terms of 

A. Now for example consider the following rectangular geometry.  

 

This could be a magnetic material. And suppose you want to set up the flux which is going 

vertically upwards as shown in the above figure. You can easily do that by imposing the boundary 

conditions as indicated in the figure. Like on the vertical edge on the left hand side there is A1, 

now remember  A1 is z directed. So the plane of the paper is xy plane and A all along the edge is 

in z direction . Here on the other vertical edge, A2 directed in z direction is defined. 

And on the two horizontal lines of the rectangle, you have homogeneous Neumann condition. I 

have explained in one of the previous lectures, homogeneous Neumann condition, that means the 

normal derivative of the field variable is 0. So now for the top horizontal line, the unit normal will 

be 𝐚̂𝑦. See, why it is normal? Because normal is always associated with a surface, so then you may 

be wondering, where is the surface in the above figure. Always remember practical things are 3D. 

So here also the rectangular block shown in the figure is a 2D approximation of a 3D cuboid.  

The third dimension is into the paper and it is 1 meter depth. So that means the length ×  1 meter 

and the corresponding surface formed by the 1 m depth and the top edge will have the unit normal. 

So the unit normal is always associated to a surface. Always you have to imagine that this is a 2D 

approximation. The actual 3D figure and the corresponding surface here is formed by the edges in 

the figure line and 1 meter depth segment.  

The unit normal will be outward for each surface since it is a closed volume. The difference in 

boundary conditions in terms of A matters, that means   𝐴1 − 𝐴2 will create flux in this block. So 

you take the difference accordingly to set up a given flux and flux density, it does not mean that 

there is no current source anywhere. The current source is there and that current source could be 

distributed current source as shown with dotted lines in the above figure. I have shown the direction 

of the current purposely with a dot here because that only will produce the flux in this direction. 



There is a distributed current source which will give this condition that A is coming out of the 

plane of the paper because the current is also coming out. Why I am saying here distributed current 

source? If it is a point source, you will not get constant A values on the vertical edges of the above 

rectangle. Then, the flux contours become circular, the values will be constant only on the circle. 

So that is why I am saying some distributed current source only will give you constant A values 

on the vertical edges. Now on vertical boundaries we have Dirichlet boundary conditions and on 

horizontal boundaries we have homogenous Neumann boundary conditions.  

Now these Dirichlet boundary conditions are not homogeneous because potentials defined on these 

edges will have some finite value. Suppose if the value of A2  is defined as 0 then the value of A1 

should be changed. Because only the difference of A matters to set up flux. So if A2 is defined as 

0 and then A1 correspondingly should have some number which sets up a given flux. Then this A2 

will become homogenous Dirichlet boundary condition. Whenever the potential specified is 

having some finite value, it is non-homogenous. If the potential specified is 0, it is called as a 

homogeneous Dirichlet boundary condition. Now consider the following  expression of B in terms 

of A (for 2D) which we have seen earlier.  

 

Here the above  expression is valid for 2D because there is only Az component and  Ax and Ay are 

0, because current is directed in z direction. So A is directed only in z direction. So Ax and Ay 

components are 0. That is why you get a simplified expression for B in the two dimensional case. 

Now let us discuss a  very important point which is not described in many textbooks of 

electromagnetics or even in books of numerical techniques on electromagnetics. But this actually 

explains the magnetic field lines and electric field lines clearly and the corresponding difference 

between them. 



So now on the two vertical boundaries here, we have defined Az, that means 
𝜕𝐴𝑧

𝜕𝑦
= 0 because Az 

is constant on those vertical boundaries. So 
𝜕𝐴𝑧

𝜕𝑦
= 0, that means the y component of B becomes 0  

and only x component exists. So in this case, the flux lines or the equi-A lines and the B vectors, 

they flow together because both are in the same direction. In this example, it is y direction. So that 

is why the magnetic flux flows along equipotential line in magnetics. Now let us see the 

corresponding thing in electric field lines case. 

In contrast, 𝐄 = −∇𝑉 and then you have got the following expression for  −∇𝑉. 

 

And now let us take again a simple parallel plate capacitor case shown in the following figure.  

 

Now here, I am taking the capacitor plates which are vertically oriented.  So you have V1 and V2 

specified as shown in the above figure. Now we know that the equipotential lines will be vertical 

and the E vector will be horizontal and orthogonal to equipotential lines. Let us verify that they 

indeed are orthogonal through the equation 𝐄 = −∇𝑉. 

Here on the vertical boundaries of the above figure we are specifying V1 and V2. So along the 

vertical boundaries 
𝜕𝑉

𝜕𝑦
= 0. Therefore only Ex exists. So it is clear that only Ex exists and that is 

what we have got, that E field vectors exist in x direction only. E vectors and V lines are orthogonal 

to each other. Remember it is E or D that flows perpendicular to equipotential lines because you 

are specifying V on the vertical boundaries. V is independent of y. So  
𝜕𝑉

𝜕𝑦
= 0.  
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The above slide shows clearly the same difference between electric flux and magnetic flux. So 

here in this slide, you have two plots, one for electric field, and the other for magnetic field. In 

case of electric field, you have a high voltage conductor in the vicinity of some ground conductor 

which also could be concentric in this case because the equi-potential lines are symmetrical and 

concentric about the circular conductor. So here you have equipotential lines circular and E fields 

are crossing the equipotential lines orthogonally. And as you see in the above slide , there is no 

electric field inside this conductor on the left hand side, because the conductor is assumed to have 

very high conductivity which is tending to infinity, and that is the main difference between the 

electric and magnetic fields. 

In magnetic field case, you have a current-carrying conductor shown on the right hand side of the 

slide, and there is internal as well as external field. So the field is there inside as well outside the 

conductor and you can see there are no orthogonal field vectors crossing the equi-potential lines. 

So that confirms the statement that we made that in case of magnetics, field vectors flow along the 

equipotential lines. In the case of electric fields, the  E field flows orthogonally to the equipotential 

lines. So that brings out the difference between the electric and magnetic fields. With this, we end 

the seventh lecture. From  tomorrow’s class, we will further see magnetics and later on, we will 

see time-varying fields.  
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Thank you. 


