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Welcome to the sixth lecture of this course. At the end of the fifth lecture, some students asked 

questions about polarization phenomena. I will explain it little bit more in detail. 

(Refer Slide Time 00:33) 

 

When we actually represent the polarization phenomena by additional induced positive and 

negative charges enclosed in circles on the capacitor plates as shown in the above slide, effectively, 

we have eliminated that dielectric; in the sense we do not have to consider polarization vector and 

all that. That is all now implicit into these additional positive and negative charges. So again, we 

don’t have to bring in that polarization P vector, once we have taken its effect into account by these 

additional positive and negative charges. 
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Now, coming to the sixth lecture, we will get into the electrostatics. Now if you take a composite 

dielectric  with the two materials – 1 and 2 as shown in the following figure.  

 

Here, 1 is oil and the other is the pressboard. Oil’s dielectric constant is 2.2 and for pressboard it 

is 4.4. The tangential component is continuous, 𝐸1𝑡 = 𝐸2𝑡. And the normal component is 

discontinuous in the inverse ratio of the two permittivities as given below.  

 

 So now, actually for this configuration,  

 

because tangential component in this case is 0, is it not? 



The tangential component is 0 because we are assuming the configuration as a parallel plate 

capacitor and the field lines are all vertical. So there is only a normal component. Now,  
𝐸1𝑛

𝐸2𝑛
 is 

equal to 
𝜖2

𝜖1
 which is nothing but 

𝜖𝑟2

𝜖𝑟1
 which is 

4.4

2.2
 and that is 2. That means oil gets stressed 2 times 

more compared to pressboard under uniform field conditions. So what is this uniform field?  

Individually if you see, in oil and solid insulations, the field is uniform. Of course, there is a 

discontinuity of the field value across the interface but individually, the field is uniform in both 

the dielectric materials. Now, we define what is called as utilization factor which can be defined 

for the following case which we have seen earlier also.  

 

Suppose you have oil in between the high voltage lead and ground as a dielectric medium, then 

you will have, uniform field when this configuration is replaced by a parallel plate capacitor. That 

means, instead of this lead, if you place a plate, then the field will be uniform with the same 

distance. 

So with respect to that, the maximum stress will be at the point (corresponding to the minimum 

distance between the two electrodes) that we defined in the previous lecture. And its magnitude 

will be more compared to the uniform condition with two parallel plates. So, that’s why the 

unitization factor is defined as 

 

Here the value of the Emax is going to be higher as compared to Euniform. So, the value of utilization 

factor is always less than 1.  Whereas in some textbooks and some research papers, they talk of 

enhancement factor, wherein the enhancement factor is an indicative of how much field is getting 

enhanced due to non-uniform fields. So the enhancement factor will be defined as:  



 

The ideal case is that you should have the utilization factor close to 1. So, the utilization factor 

being close to 1 means what?  Everywhere the insulating material is getting uniformly stressed, so 

all the regions of the material are getting optimally utilized. For an insulation system, the moment 

you have the utilization factor less than 1 or the enhancement factor greater than 1, somewhere the 

field stress is more, somewhere the field stress is less; that means the material is not optimally 

utilized in various regions. So when we do finite element analysis for insulation design, we do 

some kind of parametric studies to reduce the maximum stress and to make the utilization factor 

as good as possible.  

One option is you can increase the distance between the lead and ground but that will be 

uneconomical. Because, if the distance or the clearance increases, the size of the system will go 

up. Second:  increase the radius of this high voltage lead. That is a good option and that is generally 

done if the standard lead sizes with bigger radius are available and if the space constraint is not 

there. But that also may have some limitations, because you are going to put more copper because 

this lead is a metal.  

 The question asked by one of the students is when we increase the radius, whether the Emax will 

increase, what is done here is, the distance between the lead and ground is kept same and the radius 

will be increased. The clearance will be maintained and the radius will be increased. So the stress 

will come down here. The third option is, put insulation with higher dielectric constant (pressboard 

(PB)) over the high voltage lead as shown in the following figure.  

 



What this is going to achieve? As per the theory that we just saw; moment you have a higher 

dielectric constant material, the maximum electric stress on the lead is going to reduce. So on the 

conductor surface, the stress is going to go down because now there is a solid insulation with 

higher dielectric constant. And inside the oil, the maximum stress is going to be just at the surface 

of the solid insulation. There also, the stress value is going to go down because you are going a 

little bit away from the high voltage electrode. So the conditions will be a little bit better as 

compared to the bare conductor case.  The governing equation for electrostatics is starting with ∇ ∙

𝐸 = 
𝜌𝑣

𝜖
 . 

 Replace 𝐸 by −∇𝑉 and then you get this well-known Poisson’s equation ∇2𝑉 = −
𝜌𝑣

𝜖
 . Now here, 

the assumption we are making is that the material is homogeneous. Otherwise, if it is not a 

homogeneous material, then this 𝜖 will become a part of the opearand as given below.  

∇ ∙ (−𝜖∇𝑉) = 𝜌𝑣 

 Because there are partial derivatives with respect to x, y, z, if the dielectric constant is a function 

of xyz, then that dielectric constant should be a part of operand.  
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For the  case shown in the above slide, if volume charge density 𝜌𝑣 is 0, then we get the well-

known Laplace’s equation. And let us understand a little bit about this problem. When we expand 

Laplace’s equation, that is the ∇2 operator, you get the following equation.  

 

Now again, consider a simple parallel plate capacitor problem given in the above slide. Although 

it looks very simple, a lot of concepts are there to understand. Now, here the equipotential lines 

are horizontal and E field lines are vertical and they are orthogonal to each other. Now the first 

question is when we actually solve Laplace’s equation for this capacitor problem and of course 

this is trivial, since fringing of fields is neglected, you do not have to solve the problem using a 

numerical technique. The equipotential lines (solution for this problem) are shown in the above 

slide.  

But for the sake of argument, suppose we have to model this and solve using  FEM, then we  have 

to  solve this Laplace’s equation. Then we are imposing the voltage difference in terms of boundary 

conditions. But here now, you have charges as shown below; positive and negative charges and 

the corresponding voltages are also given in the following figure.  

 

So when you solve this using FEM, you do not worry about these charges (source). What is a 

source? In electromagnetics, there are only 2 sources; one is charge and the other is the current. 

Actually, if you see, the source is only charge because current is only a manifestation of moving 

charges. 

But for the sake of discussion, we consider 2 sources – one is charge and the other is current. So 

here, basically, the charge distribution shown in the above figure is giving this potential V. So now 

but when we do FE analysis of this problem, since in finite element method we solve it as a 



boundary value problem, we only define the boundary potentials. We do not worry about the 

charges because charges are implicit in the voltage definition, that is the boundary condition, is it 

clear? 

The question asked by one student is – what is this implicitness? Basically, this charge distribution 

is what giving the voltage V. Now these charges have come from some battery that is connected 

to charge this capacitor. The charge distribution would be such that it will give the corresponding 

voltage V. A little bit more about this, when we consider the end effects. Since we are not 

considering the end effects here, you are getting uniform field and at edges the field is uniform. 

So now before going to those end effects, let us discuss boundary conditions. 

So for the top plate, you are defining the voltage V and it is called as non-homogeneous Dirichlet 

boundary condition. Whenever you specify voltages, then it is called as Dirichlet boundary 

condition. And if the voltage is non-zero it is called as non-homogeneous, if the voltage is 0 it is 

called as homogeneous Dirichlet condition. So this terminology you will quite often see in the 

textbooks on FEM and Electromagnetics. Bottom plate voltage is 0. Now on two vertical 

boundaries, what effectively is happening? There, we have defined homogeneous Neumann 

condition. Neumann condition means the derivative of the field with respect to the distance. Now, 

what is this 𝑛? 𝑛 is the unit normal. The normal to the vertical boundaries will be in x direction. 

That is why it is 
𝜕𝑉

𝜕𝑛
= 0,  effectively 

𝜕𝑉

𝜕𝑥
= 0 . Because we have defined homogeneous Neumann 

condition on the vertical boundaries, and effectively the field has become uniform. Suppose if you 

want to analyze the end effects, what you have to do, we will see in the next slide. Another point 

to note is, those who have used FEM and solved some electrostatic problems, they will realize that 

they never define this 
𝜕𝑉

𝜕𝑛
= 0. They just define the top plate and bottom plate potentials. These 

vertical homogeneous Neumann conditions are not explicitly defined. They get automatically 

defined during the FEM analysis. How? We will see when we understand the FEM theory. There 

I will explain how they get automatically imposed even if you do not define them even in 

commercial software. Now the point to be noted here is that, we have defined homogeneous 

Neumann condition here, on these vertical boundaries. That means what? Here suppose you take 

the vertical boundary on the right hand side and the boundary condition is  
𝜕𝑉

𝜕𝑥
= 0, that means the 

voltage at a point on the right hand side of the boundary is same as the voltage at the corresponding 



point on the left hand side of the boundary.  That means you are making the horizontal lines shown 

in the figure as equipotential lines.  

If homogenous Neumann conditions are not imposed, then at the corner point of the top plate the 

equipotential lines are going to turn sharply like the way shown in the following figure.  

 

So in fact, 
𝜕𝑉

𝜕𝑥
≠ 0  if you want to consider the end effects. By imposing homogenous Neumann 

conditions and not considering the outer boundary we have ensured that the field is uniform at the 

ends. The question asked by one of the students here is, when we do not consider the end effects, 

what will the potential distribution even above and beyond the plates?  
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We will understand the answer for this question using the above slide which shows charge density 

distribution on top and bottom plates of a capacitor and this is a three dimensional distribution and 

with all end effects considered. So you can see at all the four corners of the top and bottom plates, 

you have a sudden and sharp rise in charge density distribution: positive charge density on the top 

plate and negative charge density on the bottom plate. 



Because of the sudden rise in charge density at the four ends of both these plates, you have a 

sudden increase in electric field intensity because of sharp corners. And therefore those increased 

values of electric field intensity have to be supported by corresponding higher charge densities. So 

it is very clear from this the three dimensional distribution of charge densities, the corresponding 

end effects and the high rise of electric field intensity when end effects are considered. 

(Refer Slide Time 16:37) 

 

Now the same 3D configuration that we saw in the previous slide is shown in 2D in the following 

figure, because here on the paper, I can show in 2D only.  

 

So now what I have shown? The charges in the middle, they are sparsely distributed and charges 

at the end, they are highly concentrated because the electric field intensity is high. That is what we 



saw in the previous slide. So to reproduce exactly those high fields and high charges at the ends, 

you need to have very fine FEM discretization or mesh at the ends. And how to achieve this we 

will see when we start looking into FEM. 

Also, remember that when we want to take the end effects into account, we have enclosed the 

capacitor configuration in a bigger box as shown in the above figure. So the outer box is like a 

bigger rectangle and in 3D, it will be a cuboid. And these distances from the capacitor plates to the 

box should be sufficiently high so that the boundary conditions do not affect the field distribution. 

So that is one thing. Also remember that the field distribution will not just be inside the capacitor 

as shown in the figure but there will be some field lines that originate from the positive charges on 

the outer surface on the top plate and terminate on the outer surface of the bottom plate. If you 

actually do the FEM analysis, you will see that. 

The field is everywhere inside the box, although the magnitude of field will be much less in the 

outer part. So we will take one more this last point and then we will go to the next topic. Now we 

will see the conductor dielectric interface which is very important and there are some very 

interesting applications. So first is, let us have an isolated conductor in electric field as shown in 

the following figure. 

 

Now the electric field is the vertical direction, and you are keeping an isolated conductor. The 

moment you keep it, the E field is everywhere in the vicinity of the conductor. The positive charges 

will get pulled up and the negative charges will go down. The top surface of the conductor is 

positive and the bottom surface is negative. 

The electric field lines inside the conductor will be from the top surface to bottom surface 

(vertically downward). There is no volume charge inside the conductor because all the charges got 

displaced towards the surfaces. So there is no volume charge and there is only surface charge. That 

means in the first Maxwell’s equation  ∇ ∙ 𝐷 = 𝜌𝑣 should be modified because there is no volume 



charge. But now since there is no volume charge, the corresponding equation gets sort of modified 

as 𝐷𝑛 = 𝜖𝐸𝑛 = 𝜌𝑠 where 𝜌𝑠 is the corresponding surface charge density. This is a manifestation 

of the first Maxwell’s equation written in a different form because now instead of volume charge 

density, you have surface charge density. 

It makes sense because 𝜌𝑠 has the unit of C/m2. So that matches with the unit of D which is also 

C/m2. That is why 𝐷𝑛 = 𝜌𝑠 . The internal E field also has to be 0, because inside this conductor 

there are no charges within the volume. In electrostatics, when currents are not flowing, there are 

no charges, you take any Gaussian surface inside the conductor and calculate ∯ 𝜖𝐄 ∙ 𝑑𝐒, you will 

get identically 0 because the charge enclosed is 0. And if you calculate E that also will be equal to 

0, because there are no charges inside. But the electric field intensity is only outside the plate. And 

why electric field is 0 that can be also understood by noting that internal E field gets cancelled 

because the E field due to surface charges is vertically down. That will exactly cancel this external 

(applied) field. That ensures this condition that E is 0 inside the conductor, because there are no 

volume charges. So both things are in sync with each other. Now there is one very interesting 

example of electrostatic shielding and Faraday cage. So what is that? Let us understand. 

Suppose you have a conducting shell, maybe you can assume a spherical conducting shell which 

has  some space inside and there is some charge inside that spherical shell. That is plus Q as shown 

in the following figure.  

 

 

Now that plus Q is going to induce negative charges. When I say induce, that means it is going to 

pull the negative charges by attraction. And the inner surface will get negatively charged as shown 

in the above figure and the outer surface of the shell will get positively charged. So now if you 

take any point in the conducting shell, E is equal to 0 by the same logic that we just now saw and 



that can be reconfirmed by taking a Gaussian surface. And now the net charge enclosed is 0 by 

any surface inside the conductor because the positive Q and negative Q will cancel each other. 

The net charge enclosed will be 0 in the Gaussian surface taken inside the conducting shell. So 

that means what you have ensured is E is 0. But when you take a practical application, you cannot 

have these positive charges remaining on the outer surface of the shell. You have to drain them to 

ground. Otherwise, if you put it like the way shown in the above figure, the outer surface charges 

can be quite high depending on the value of plus Q inside the shell and corresponding voltage will 

be high. So that is why you need to ground this outer surface and then it becomes a perfect 

shielding. 

That is the principle behind this electrostatic shielding. Inside a Faraday cage, which is a metallic 

enclosure, there is a high voltage source as shown in the following figure. And then we ground 

that Faraday cage. And then what happens? 

 

It is the same thing, the only difference is the conducting shell is a cube as shown in the above 

figure with some finite metal thickness and now if we ground the outer surface of the cube, all 

these positive charges will go to ground and within the metal thickness, the E is going to be 0 here 

because of the same phenomena that we discussed. If the charge of the HV source is plus Q, there 

will be minus Q on the inner surface of this metallic enclosure and if you take any Gaussian surface 

within the thickness of that Faraday cage, the total charge enclosed will be 0. That is why E 

everywhere will be 0 inside that.  

You have effectively isolated the inside and outside environments because there is no E field in 

between. So there is some region which is separating inside and outside regions wherein E is 0. 

That means there will not be effects of outside field on the inside field and vice versa. Is this point 

clear? So that is the principle behind this electrostatic shielding. I will just repeat what we just now 

said about this electrostatic shielding. 



You have some high voltage source which represents this positive charge Q. And around it you 

have this conducting shell and then you have negative charges induced as shown on the inner 

surface of the shell and positive charges charges on the outer surface of the shell. And since there 

is no charge inside this conducting shell, E is 0 and then that is how you can say that the 2 inner 

and outer regions of the shell got sort of electrically isolated because E is 0.  

(Refer Slide Time 26:20) 

 

Now, we will just understand further this electrical isolation of the +Q inside the conduction shell 

using the following figure. 

 

Now suppose if the plus Q charge which is shown concentric with the spherical shell in the above 

figure is shifted to the right hand side, what will happen? These negative charges on the right hand 

side of the inner surface will be more. And negative charge density on the other side of the inner 

surface will be less. But what will happen to these positive charges on the outer surface? They will 



remain as they are because there is no connection between the positive charges on the outer surface 

and the negative charges on the inner surface, because E is 0 in between the two surfaces.  

But suppose if I bring a ground plate in the vicinity of the above-discussed system as shown in the 

following figure, 

 

 what is going to happen? The positive charges will get concentrated on the surface which is facing 

the ground plate. So when we initially discussed the electrical isolation system, we assumed that 

there are no other charged objects in its vicinity. And then that is why these positive charges are 

independent of the movement of this high voltage source or plus Q source which is within this 

innermost part of the spherical shell. If you have understood this, then as I mentioned in the 

previous slides, we should ground the outer surface, so that the positive charges on this surface 

will get drained to the ground and then this will be electrically safe even to touch.  
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Niow, I will show you one interesting application and practical demonstration of this electric 

isolation or electrostatic shielding concept. In the above slide, what you see is a high voltage 

source, this source is a high voltage transformer for which 230 V is the input and 100 kV is the 

output. You can see all these electrodes which are at high voltage are smooth and round electrodes 

because otherwise they will lead to high voltage stresses and would themselves become sources of 

corona or partial discharge. 

The high voltage equipments is enclosed in the aluminum cage as shown in the above slide. And 

here you can see there is a copper strip which runs at the bottom level of this Faraday cage from 

inside. And this copper strip connects positively all these individual panels of the aluminum to 

ground through an earth pit.  
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High voltage source is  inside this cage and there is a mesh as shown in the figure on the left hand 

side of the above slide. So this cage is grounded through an earthing pit and becomes a case of 

electrostatic shielding. And here, the thickness of this aluminum cage is not so much important 

from the point of view of electrostatic shielding. You can use whatever thickness mechanically 

sufficient and commercially available. But later on, we will see when we are interested in 

electromagnetic shielding the thickness of the metal is important. What we just saw is electrostatic 

shielding from the point of view of high voltage. 

But suppose you are conducting some high voltage test like corona or partial discharge studies 

inside this setup, these tests generate high-frequency electromagnetic waves, those waves are 

shielded from going out and affecting some electronic products. Also, if there are some discharges 

happening outside, those discharges should not affect the tests that are being conducted inside. So 

either ways, you want electromagnetic shielding. Now, this is high-frequency shielding. So for 

that, later on when we study eddy currents, we will see that you need to have a finite thickness of 

this shield depending upon the frequency of interest. That we will study later. What we just saw 

was only the electrostatic shielding. The electromagnetic shielding, we will discuss little bit later.  
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Before ending the discussion on electrostatics, let us discuss one practical example of condenser 

bushings in which capacitive grading is done to improve E field distribution. We know for a 

coaxial cable configuration with two cylindrical electrodes as shown in the above slide, the E field 

is non-uniform as given by the curve shown in the slide. The electric field intensity is high on the 

inner conductor surface. And as we go away from this inner surface in this insulation, the region 

near the outer electrode is less stressed. 

Stress is higher at the inner conductor and it is lower at the outer conductor and therefore, that is 

not a good insulation design.  𝐸𝑚𝑎𝑥 is given by the following formula,  

𝐸𝑚𝑎𝑥 =
𝑉

𝑎 (ln
𝑏
𝑎)

 

How do we make this electric field intensity inside the insulation more or less uniform? We cannot 

make it absolutely uniform. But how do we make it close to uniform distribution? There are 

different ways in which one can achieve this. One of the common ways, we will discuss in the next 

slide. 
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Let us understand how capacitive grading in condenser bushings achieves more or less uniform E 

field distribution. What are condenser bushings? They connect transformer’s high voltage 

terminals to transmission lines. A condenser bushing consists of a central HV conductor which on 

one side it connects to a transformer winding, on the other side it connects to a transmission line. 

So what is done here is, the HV conductor is taken out of the transformer tank through the opening 

nd the black colour lines shown in the figure on the left hand side of the slide are the metal flanges 

which are at ground potential. So this HV conductor has to be properly insulated from the ground. 

If we put simply paper insulation throughout on the conductor, then it will be non-uniformly 

stressed as explained in the previous slide. So, we insert here electrically floating cylindrical 

conductors to make the stress uniform and they get potentials based on their position. And in 

between these conductors, of course, there is paper insulation. Now, this actual configuration can 

be equivalently represented by this schematic, which is not to the scale and central conductor is 

assumed to be at some positive potential at the instant being considered. So there will be some 

positive charge on that central conductor. So now these floating metallic coils will get charged to 

negative and positive values as shown in the figure on the right hand side of the slide and that too 

alternately. 

So now consider a foil which is just adjacent to the HV conductor, we will have negative charge 

on the surface that is facing the conductor and on the other surface of the foil you will have positive 



charge as shown in the above slide. Again negative and positive charge on the next cylindrical foil 

conductor and so on. So thing to note here is this total negative charge on the inner surface of this 

first foil which is adjacent to the conductor will be numerically equal to the positive charge on the 

HV conductor. Of course the positive charge on the other surface of the foil will be again equal to 

this negative charge in terms of magnitude. If we have understood this charge distribution, let us 

then go further and understand how uniform E field distribution is achieved.  
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In 2D cross-section, these floating metallic cylindrical foils will appear as line charges. And for 

line charges on an nth metal foil, Emax is given by the following standard formula 

 

where 𝑅𝑛 is mean radius and 𝐿𝑛 is length of the nth metal foil. So let us derive the above formula 

from fundamentals. If you consider insulation between any 2 conductors, for example let us take 

the first two conductor foils which  are floating at some potential. 𝜌𝑆 will be given by the following 

expression and and Dmax will be normal to the conductor; so it is in the horizontal direction. 

𝜌𝑆 = 𝐷𝑚𝑎𝑥 = 𝜖𝐸𝑚𝑎𝑥 =
𝑉

𝑎 (ln
𝑏
𝑎)

 



And what is 𝜌𝑆? 𝜌𝑆 is the surface charge as we saw in the previous slide. So 𝜌𝑆 = 𝐷𝑚𝑎𝑥 = 𝜖𝐸𝑚𝑎𝑥. 

And what is E max? E max is 
𝑉

𝑎(ln
𝑏

𝑎
)
 as seen on the fifth slide. So going further, 𝜌𝑆 can also be 

written as Q upon surface area. And surface area is 2𝜋𝑅𝐿  because 2𝜋𝑅 is circumferential length 

and L is length or height of the conductor. Therefore, 𝜌𝑆 =
𝑄

2𝜋𝜖𝑅𝐿
. Using the above relation of 

𝜌𝑆 and 𝐸𝑚𝑎𝑥, we get 

𝐸𝑚𝑎𝑥 =
𝑄

2𝜋𝜖𝑅𝐿
 

Now if you replace 
𝑄

𝐿𝑛
as 𝜌 which is charge per unit length in C/m, then we get the following 

formula which was given in lecture four, slide four.  

𝐸𝑚𝑎𝑥 =
𝑄

2𝜋𝜖𝑅𝑛𝐿𝑛
=

𝜌

2𝜋𝜖𝑅𝑛
 

So now coming back to how do we get improved E field distribution in this formula, if we maintain 

Emax constant in each of these capacitors, now each set of two foils forms a capacitor. So in each 

of these capacitors, we can maintain Emax as constant by keeping this RnLn product as constant. Q 

is anyway same for all these conductors as was explained on the previous slide. 

So as the mean radius (Rn) is going up as you go away from the central conductor, what you do is, 

you have to reduce the height or length of this floating metallic conductors and by virtue of that, 

you can maintain Emax as constant and because of that, more or less uniform E field distribution is 

obtained. Now let us understand this more intuitively. When we are reducing height of these layers, 

what actually we are doing is, we are reducing the effective capacitance between these conductors? 

Why? Because as per the standard capacitance formula 
𝜖𝐴

𝑑
, the capacitance will be decreased as the 

surface area is reduced .  

So if the surface area (A) reduces, the distance between the plates (d) being constant, the 

capacitance is reduced but the charge is same, so V will increase.  Increase in the potential of the 

foil conductor reduces the electric field intensity between these two conductors. So this is how 

Emax comes down. And then Emax can be maintained constant by keeping the RnLn product as 

constant. It should be remembered that here we have done some approximations, for example, we 



have neglected fringing at the ends. If we have to consider fringing, then of course, we need to do 

finite element analysis. And then how we do that for a typical high voltage insulation system, we 

will do that kind of analysis in one of the lectures later. So with this, we conclude lecture 6 and we 

have finished electrostatics part of our course and in the next lecture we will start with magnetic 

fields. Thank you. 
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