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Welcome to lecture 38. Now, we will go to the next complexity in our FEM formulations. In 

this lecture, we will consider nonlinearity which we have not considered till now. In this course, 

first we saw simple static cases then we went to time harmonic cases and then we considered 

voltage fed or current fed coupled circuit field cases. We also saw the complexities like moving 

mesh in case of rotating machines. But, in all these problems we had considered essentially 

linearity. 

Now, we will see how to handle nonlinearity of magnetic materials and then the formulation 

can be integrated into any of the formulations that we have seen earlier to solve any nonlinear 

problem in two dimensions. We will handle the nonlinearity by using the well-known Newton 

Raphson technique which is widely used in power systems and power system analysis because 

of its fast convergence. 
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Let us solve the following Poisson’s equation with nonlinearity involved.  

 



 At the first instant, we will assume constant permeability in the magnetic medium and 

everywhere in the medium as the initial guess. So, 𝜈 in the above equation is 
1

𝜇
 and the equation 

gets reduced to the following equation after applying the FEM discretization procedure. 

[𝐶]{𝐴} = {𝐵𝐽} 

So, we will get {𝐴}1 = [𝐶]−1{𝐵𝐽}. We are calling this step as the first iteration and the [𝐶] 

matrix is calculated using the initial guess of permeability. Here we have to remember that the 

global coefficient matrix [𝐶] contains the information about geometry and material properties 

(𝜇). So, in the whole magnetic medium, we will be assuming constant permeability (𝜇) and 

then we will be calculating the entries of [𝐶]. 

The matrix [𝐶] is the initial guess as we are in the first iteration. Matrix {𝐴}1(= [𝐶]−1{𝐵𝐽}) 

has magnetic vector potentials at each and every point in the domain at the first iteration. 

{𝐵𝐽} comes from the source conditions (−𝐽) in the governing PDE.  After calculating {𝐴}1 in 

the first iteration we can calculate magnetic flux density in all elements using the following 

standard equation which we have seen in the previous lecture. 

 

The derivation of this equation can be found in lecture 21 slide number 2.   

Using the computed flux density, 𝜇 in nonlinear (magnetic) region can be updated. To update 

the value of 𝜇, we have to express 𝜇 as a function of B. We will see the procedure in a later 

slide. As 𝜇 is a function of B  and the value of B is calculated in each and every element of the 

domain then 𝜇 in each element of the nonlinear region can be updated separately and the value 

of 𝜇 is different in different elements. Though, in the first guess we have assumed 𝜇 as constant 

in the entire nonlinear region. 

In general, 𝜇 is different in different finite elements for the same magnetic domain because B 

would be different in different elements. Now, residue in element is calculated by using the 

following equation. 

 



Here, 𝑅 stands for residue in the first iteration, matrix [𝐶]1 is updated with new values of 𝜇 and 

{𝐴}1 is magnetic vector potentials determined in the first iteration.  

Please do not confuse {𝐴}1 with 𝐴1, 𝐴2, and 𝐴3 which are the magnetic vector potentials at the 

nodes of any element e. Whereas matrix {𝐴}1 is the column vector of magnetic vector potential 

at the 3 nodes in the element in the first iteration. Later on, in the global level matrix equation 

{𝐴}1 will be magnetic vector potentials at all the nodes in the problem domain in the first 

iteration. 

Now, this residue is represented by the above equation. So, [𝐶]1{𝐴}1 − {𝐵𝐽} with the updated 

𝜇 need not be necessarily 0. If the value of initial guess of 𝜇 is close to the calculated 𝜇 then 

only the value of residue will come to 0 in that particular element. But, in general, the value of 

residue will not be 0.  

So, we need to refine the value of 𝜇 in every iteration to obtain a perfect solution residue equal 

to 0. At the element level, we are splitting matrix [𝐶] into 2 parts as 𝜈[𝐶𝑙]. The value of 𝜈 is 

nothing but 
1

𝜇
 and we are assuming that the value of permeability over the whole element region 

is constant. So, for every element, 𝜇 is constant. 

For different elements, 𝜇 will be different and it will be representing nonlinearity. Whereas 

[𝐶𝑙] is a linear part of C which is not changing with 𝜇. 
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Now, we will consider the following Taylor series expansion of R.  

 

In the above equation, higher order terms are neglected. The above expression, is similar to  

 

So, we are neglecting second order and higher order terms and approximating the updated 

residual to 0, because our objective is to make the value of residue as 0. 

Equating the above equation of R to 0 modifies the equation as 

 

Again remember, this R and A are written in curly brackets because they are column vectors. 

If we are at the element level the dimensions of R and A matrices will be 3 × 1. The entries of 

A matrix will be 𝐴1, 𝐴2, and 𝐴3. Similarly, the entries of R will be 𝑅1, 𝑅2, and 𝑅3 which 

represent residue at each node of the element. The entries of 
𝜕{𝑅}

𝜕{𝐴}
 (Jacobian matrix) are given 

below. 

 

The above matrix is the element level Jacobian matrix.  

 

Now, this residual matrix will have three components, because this R is a column matrix with 

𝑅1, 𝑅2, and 𝑅3 in the iteration 1. 𝜈1 (=
1

𝜇1
) is the material property in the first iteration. 



The entries of the matrix [𝐶𝑙] will have 𝐶11
𝑙 , 𝐶12

𝑙 , 𝐶13
𝑙  up to 𝐶33

𝑙   and the superscript 𝑙 represents 

linear part which is not a function of 𝜇. So, if we are solving a static problem then there is only 

one value of 𝜈1, {𝑅}1 and {𝐴}1. If we are solving a transient nonlinear problem then in every 

iteration of a time instant, 𝜈1, {𝑅}1and {𝐴}1 will be constant. 

When we go to the next time instant and do the iterative procedure again then of course the 

values of 𝜈1, {𝑅}1 and {𝐴}1 will change. So, that is why subscripts are only for these variables. 

The matrix [
𝜕{𝑅}

𝜕{𝐴}
]

1
for the first iteration is given in the previous equation. The size of this matrix 

is 3 × 3 because the dimensions of {𝑅}1 and {𝐴}1are 3 × 1. 
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The first element of the {𝑅}1matix is given below  

 

This expression is obtained by expanding the first row of previous matrix equation. The 
𝜕𝑅1

𝜕𝐴1
 is 

evaluated as given below. 

 

In the above equation, 𝑅1 and 𝐴1 are not in curly brackets because this represents the residue 

of only node 1. So, 
𝜕𝑅1

𝜕𝐴1
 will simply have 2 terms which are obtained by following uv rule of 



differentiation.  Now, we are writing 
𝜕𝑣

𝜕𝐴1
 as 

𝜕𝑣

𝜕𝐵2

𝜕𝐵2

𝜕𝐴1
 and the above equation is rewritten as given 

below.  

 

The nonlinear magnetic characteristic with hysteresis neglected can be approximated as  

 

In the above equation, H is expressed as some nonlinear function of B. The whole term in the 

bracket is representing 𝜈 as 

 

Because 𝐻 = 𝜈𝐵 =  
𝐵

𝜇
 or 

𝐵

𝐻
= 𝜈.   

So, 𝜈 or 𝜇 is a function of 𝐵2 and we are taking it as a function of 𝐵2 because in the FEM 

formulation we directly get value of 𝐵2. Now, 
𝜕𝑣

𝜕𝐵2 will be simply represented as 

 

Then, 
𝜕𝐵2

𝜕𝐴1
 will be  

 

The above equation is obtained by evaluating the expression of 𝐵2 that we have seen in the 

previous slides.  
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Now, we will go to the following global level equation.  

 

The variables or matrices in the above equation are global level quantities which are obtained 

by combining element level quantities as we did earlier. So, the size of {∆𝐴}1 matrix will be 

𝑛 × 1 and it is a column matrix. The size of Jacobian inverse will be 𝑛 × 𝑛 because the product 

of Jacobian inverse matrix and residue column matrix at iteration 1 will give {∆𝐴}1 matrix 

whose size is 𝑛 × 1.  The entries of {𝑅}1are 

 

So, the nodal potentials for the second iteration can be written as  

 

By adding {∆𝐴}1 to {𝐴}1 we will get magnetic vector potential values for the second iteration.  

Then, we have to go to the next iteration.  



So, by using the above equation we would have got A in the second iteration. Using the 

corrected A we can update 𝐵2 which is a function of nodal potentials for a finite element. From 

B, we calculate 𝜈 or 𝜇 which has been expressed as a function of 𝐵2. Then using the calculated 

𝜈 again we calculate element level and global level residual matrices. The rest of the procedure 

will be repeated till we meet the convergence criterion.  

If there are say 1000 nodes then there will be 1000 residues. If the maximum value of those 

1000 residues is less than some predefined threshold number which can be a very small number 

then we can stop saying that the convergence has reached and we have got the solution at that 

instant. 
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Now, we will take one case study as we have been doing after developing every FE formulation. 

This problem is a coupled circuit field nonlinear transient simulation. Here, there are three 

complications. In the previous lectures, we had seen coupled circuit field and transient 

formulation and for those formulation we are including nonlinearity in this lecture. So, in this 

case study, we are combining all these 3 formulations together. In the above slide there is a 3 

phase transformer with 3 primary windings which are excited by a voltage source and the 

transformer will draw inrush currents. Now, we will study the inrush currents in all the 3 

phases. So, the primary windings of the 3 phases are driven by a coupled circuit which is the 

time-varying voltage source. That is why the formulation is transient and the nonlinearity of 

the magnetic material is also modelled.  Now, we will see the simulation in time. 
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In this slide, we can see animated FEM solution obtained using the devoloped coupled circuit 

field nonlinear transient formulation which we saw in the present lecture and in the previous 

two lectures. We saw all the three formulations and if we write the corresponding code by 

considering all the complexities then we can get such time domain simulation results.  

We have to model the material properties as a function of B because when the transformer is 

switched-on the flux density in the core can be quite high and can drive the transformer into 

deep saturation depending upon the residual magnetism at the instant of time of switching.  In 

the simulation, we can also see that at some instants of time the flux is going out of the core 

because of the saturation. So, the flux coming out of the core depends on the saturation level 

and that can be easily studied using such simulations. 
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Now, we will see the inrush currents drawn by the transformer in time domain. The currents in 

the above slide are functions of time. In the figure, R phase, Y phase, and B phase currents are 

marked with different colours. The R phase current is maximum because in the simulation we 

excited all the 3 windings at an instant which corresponds to R phase voltage being 0.  That is 

why this switching instant is worse for the R phase and it is not bad for Y and B phases. We 

know that an RL circuit draws maximum current if it is exticted with zero voltage. We are 

considering this as a lossless case and we are not considering resistances of the circuit. So, like 

this, we can do transient nonlinear coupled analysis for any electromagnetic device. Thank you. 
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