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Welcome to 36th lecture. In this lecture, we will see current fed coupled circuit field analysis. In 

many of our problems related to electrical machines and equipment, we generally have current fed 

systems. But most of our devices are voltage fed. We make the analysis as a current fed FE analysis 

to simplify it because the current passing through a coil is generally known to us while formulating 

the analysis.   

Generally, we should remember that all the devices are typically voltage fed. But for analysis 

purpose, we take as current fed cases for understanding in depth behavior of field distribution and 

the corresponding performance parameters, more about it when we see actual examples. So, when 

we say massive conductor we are considering eddy currents in that conductor.  

That means if eddy current losses are considered then 𝜎
𝜕𝐴

𝜕𝑡
 (eddy current term) has to be 

considered. Now, we start with ∇ × 𝐇 = J  which is one of the Maxwell's equations with 

displacement current density being neglected because we are modelling the low frequency fields. 



In the Ampere’s law, J is replaced by 𝜎𝐄 and E is replaced by −∇𝑉 −
𝜕𝑨

𝜕𝑡
.  Remember that ∇𝑉 is 

not on account of charge accumulation, but it represents the voltage that is impressed across the 

terminals of the coil. Going further, H in the Ampere’s law is replaced by 
𝐁

𝜇
 and B is replaced by 

∇ × 𝐀.  So, the curl equation will be modified as given below. 

∇ ×
1

𝜇
(∇ × 𝐀) = 𝜎𝐄 

We will invoke Coulomb gauge ∇ ∙ 𝐀 = 0 which we have seen in basics of electromagnetics. 

Generally, ∇ ∙ 𝐀 = −𝜇𝜖
𝜕𝑉

𝜕𝑡
. This equation is called as Lorenz gauge. But if the frequency is small 

then ∇ ∙ 𝐀 = 0 has to be invoked, because ∇ × ∇ × 𝐀 = ∇(∇ ∙ 𝐀) − ∇2𝐀  which is a vector identity.  

After invoking ∇ ∙ 𝐀 = 0 we are left with the following equation, 

−
1

𝜇
∇2𝐴 = 𝜎E 

 We replace this E expression with −∇𝑉 −
𝜕𝑨

𝜕𝑡
. 

1

𝜇
∇2𝐴 = 𝜎∇𝑉 + 𝜎

𝜕𝐴

𝜕𝑡
 

It is mentioned earlier that the right hand side of the above equation  𝜎∇𝑉 is representing the source 

current density and 𝜎
𝜕𝐴

𝜕𝑡
 is representing induced current density. So, the functional for the above 

equation in the frequency domain is  

𝐹 =
1

2
∫

1

𝜇
|∇𝐴|2𝑑𝑣

𝑣

+ 𝑗𝜎𝜔
1

2
∫ 𝐴2𝑑𝑣

𝑣

− ∫ 𝜎
𝑉

𝑙
𝐴𝑑𝑣

𝑣

 

 The first term in the above equation is given by the following equation 

1

2
∑ ∑ ∑ ∫

1

𝜇
𝐴𝑖

𝑒 (∇𝑁𝑖(𝑥, 𝑦) ⋅ ∇𝑁𝑗(𝑥, 𝑦)) 𝐴𝑗
𝑒𝑑𝑥𝑑𝑦

𝑆𝑒

3

𝑗=1

3

𝑖=1𝑒

 

We have seen this expression in the previous lecture and this will give us the global coefficient 

matrix. By combining all element coefficient matrices we will get the global coefficient matrix.  



Then the second term of the functional is obtained by replacing 𝜎
𝜕𝐴

𝜕𝑡
 by 𝑗𝜔𝐴. So, 𝑗𝜔𝐴 becomes 

𝑗𝜔𝐴2 in the functional. We have seen earlier that if we take the terms except 
1

𝜇
∇2𝐴 on the right 

hand side then the sign of those terms gets reflected in the corresponding functional terms. This 

we have seen when we studied functionals. The ½ multiplicand comes with the first two terms of 

functional because there is a square term.   

The ∇𝑉 term on the right hand side of the PDE is −
𝑉

𝑙
 because the gradient of voltage is from low 

to high and electric field (E) is from high to low. That is why ∇𝑉 = −
𝑉

𝑙
 because 

𝑉

𝑙
 is basically 

directed from positive to negative. Effectively, E = −
𝑉

𝑙
 because E is directed from positive to 

negative. 

So, ∇𝑉 = −
𝑉

𝑙
 is substituted in the PDE that is why we have the minus sign for this term in the 

functional expression. Since there is no A with this term in the PDE then 
𝑉

𝑙
 in the functional will 

get multiplied by A. After FEM discretization, A is replaced by ∑ 𝑁𝑖𝐴𝑖
𝑒3

𝑖=1  and then after 

simplification we will get two summation terms for the first two integrals in the functional 

expression. For the third term, 𝜎
𝑉

𝑙
 is anyway constant and A is replaced by ∑ 𝑁𝑖𝐴𝑖

𝑒3
𝑖=1  and then 

summed over all the elements. 
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We will get the entries of  element level 𝐵𝑒 matrix as 𝜎
∆

3
 because we have 𝜎

𝑉

𝑙
 as constant. Now, 

if we are doing 2D approximation then 𝑙 = 1. So, entries of 𝐵𝑒matrix are just 𝜎
∆

3
.  Here, V is the 

unknown variable because this is a current fed formulation system and voltage V is unknown. In 

the following term, 𝜎𝑉 is constant and 𝑙 = 1  

𝜎
𝑉

𝑙
∑ 𝐴𝑖

𝑒 ∑ ∫ 𝑁𝑖(𝑥, 𝑦)𝑑𝑥𝑑𝑦

𝑆𝑒

3

𝑖=1𝑒

 

The ∫ 𝑁𝑗(𝑥, 𝑦)𝑑𝑥𝑑𝑦
𝑆𝑒

 term reduces to 
∆

3
 and the term 𝐴𝑖

𝑒 will be cancelled in the process of 

minimization. Since we have considered 𝑙 = 1, we are doing per meter depth calculation.  

So, 𝜎
𝑉

𝑙

∆

3
 will go to element level B matrix and V goes to the unknown matrix when we form the 

global coefficient matrix.  

In the following matrix equation, [𝐶] is our normal coefficient matrix which is multiplied with the 

corresponding unknown magnetic vector potentials which is column vector {𝐴} with all unknown 

nodal magnetic vector potentials.  

[𝐶  ]{𝐴} + 𝑗𝜔[𝐷 ]{𝐴} − {𝐵}{𝑉} = 0 



The 𝑗𝜔[𝐷 ]{𝐴}  is the same what we had seen in the diffusion equation solution (Refer L27 Slide 

6). So, [𝐷] matrix represents the diffusion term in the PDE. The element level [𝐷𝑒] is appended to 

form  global [𝐷] matrix as we have seen earlier.  

The current in the massive conductor is defined by the following equation. 

𝐼 = ∬ 𝐽d𝑆𝑒

𝑆𝑒

 

Suppose, we are modelling a massive conductor (shown in the following figure) which is fed by 

some current source I.  

 

When the current enters the massive conductor then it will have eddy currents and source current 

defined by the above equation. As we are considering  conductivity, then there will be eddy 

currents in the conductor. So the current inside this massive conductor will be the superimposition 

of the source current and the corresponding induced eddy currents. But the total current (I) will 

remain the same because KCL has to be satisfied. 

The total current in any cross section of the massive conductor will be 𝐼 = ∬ 𝐉 ∙ d𝐒𝑒
𝑆𝑒 . If we 

integrate the current density at any cross section of the conductor will give the terminal current. 

Remember that terminal current is due to combination of the source current and induced currents.  

Now, J in ∬ 𝐉 ∙ d𝐒𝑒
𝑆𝑒  is replaced by −𝜎∇𝑉 − 𝜎

𝜕𝐴

𝜕𝑡
 and expression of current in the conductor gets 

modified as 

𝐼 = ∬ 𝐽d𝑆𝑒

𝑆𝑒

= ∬ (−𝜎∇𝑉 − 𝜎
𝜕𝐴

𝜕𝑡
) 𝑑𝑥𝑑𝑦

𝑆𝑒

 



So, the corresponding source current is 𝜎
𝑉

𝑙
 , 𝑙 is the length of the conductor and V is the terminal 

voltage. Then, 
𝑉

𝑙
 is voltage per unit length and remember the terminal voltage V is unknown. In 

this problem, current fed to the conductor is known. 

In the previous case, some known voltage was applied to one of the windings and the other winding 

was short-circuited. Also, currents in both windings were unknown. In the case of a massive 

conductor fed by a current source in which eddy currents are induced the terminal voltage across 

the conductor is unknown.  

Going further, after separating the terms and replacing A by ∑ 𝑁𝑖𝐴𝑖
𝑒3

𝑖=1  and following usual FEM 

discretization procedure we get the following equation.  

𝐼 = − ∬ 𝜎∇𝑉d𝑥d𝑦

𝑆𝑒

− ∬ (𝜎𝑗𝜔 ∑ 𝑁𝑖

3

𝑖=1

𝐴𝑖) 𝑑𝑥𝑑𝑦

𝑆𝑒

= ∬ 𝜎
𝑉

𝑙
d𝑥d𝑦

𝑆𝑒

− ∬ (𝜎𝑗𝜔 ∑ 𝑁𝑖

3

𝑖=1

𝐴𝑖) 𝑑𝑥𝑑𝑦

𝑆𝑒

 

We are substituting ∇𝑉 = −
𝑉

𝑙
.  Now, 𝜎

𝑉

𝑙
 is constant so∬ 𝜎

𝑉

𝑙
𝑑𝑥𝑑𝑦

𝑆𝑒  will simply give the area of 

the triangle. The second integral in the above equation will give 𝑗𝜔
∆

3
. The unknown 𝐴𝑖 will go into 

a column vector. The rest of the term gives 𝑗𝜔𝜎
∆

3
. Then the above equation reduces to the following 

matrix equation. 

𝐼 =  𝜎
𝑉

𝑙
Δ𝑒 − 𝜎𝑗𝜔

Δ𝑒

3
{1 1 1} {𝐴𝑒}⏟

 3×1

 

The above matrix equation is in frequency domain. In this equation, the term 𝜎𝑗𝜔
Δ𝑒

3
{1 1 1} 

represents element level 𝐺′ matrix that we saw in the previous lecture. Again here, since A is a 

column vector at the element level, transpose of G is taken so that the matrix multiplications 

become row vector into column vector and gives 1 × 1 matrix. So, the size of element level 𝐺′ 

matrix 1 × 3 and element level 𝐴 matrix is 3 × 1 so the product of two matrices will be 1 × 1 

which matches with the right hand side variable whose size is 1 × 1. 



The element level T matrix will have one entry whose value is 𝜎
∆𝑒

𝑙
 and V goes in to the variable 

matrix. When we change the T matrix to global matrix then  ∆𝑒 of all the elements in the conductor 

will get added and result into the cross sectional area of the conductor.   
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The field and circuit equations can be written as  

 

The first equation is field equation and the second equation is circuit equation. So we have to 

remember that in this coupled system of equations, there are coupling parameters. In the circuit 

equation, the coupling parameter is A and it represents field domain in the circuit equation 

whereas, in the field domain equation, the coupling parameter is the terminal voltage (V). 

The above two equations are not independent, because we are solving a coupled circuit field 

system. So, there have to be coupling quantities in the two equations. A and V are the coupling 

quantities. In the previous lecture, A and I were coupling quantities and since we had two windings, 

so I was representing  𝐼1 and 𝐼2. 



Then, 𝐼1, 𝐼2 and A were the coupling quantities in voltage fed coupled circuit field case which we 

have seen in the previous lecture. In this formulation, V and A are the coupling quantities. So, now 

the global combined equations are in the following matrix equation 

 

In the above equation, there is just one modification, we are combining [𝐶  ] and 𝑗𝜔[𝐷 ] as we did 

in the diffusion case and we are calling it complex global coefficient matrix.   

So, [𝐶𝑐] = [𝐶] + 𝑗𝜔[𝐷],  refer lecture 27 slide 7 for this. [𝐶𝑐] is the global system of equations. 

The dimension of [𝐶𝑐] is 𝑛 × 𝑛. The dimensions of other matrices are indicated in the above matrix 

equation. The size of the square matrix on the left hand side will be (𝑛 + 1) × (𝑛 + 1), unknown 

matrix is  (𝑛 + 1) × 1. Also, the size of right hand side matrix is (𝑛 + 1) × 1.  

Then we solve the above matrix equation. Here, the right hand side column vector is known. The 

square matrix on the left hand side is also known. The T matrix is function of 𝜎, and G and B 

matrices are 𝜎
∆

3
. So, all the quantities in the square matrix are known. [𝐶𝑐] matrix is a function of 

only geometry and material properties and this matrix is our usual global coefficient matrix. So, 

we take inverse of the square matrix and then we will get the unknown quantities which are 

magnetic vector potential values in whole field domain and the voltage across the terminals. 
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Let us see some examples. The above slide shows the skin effect of a current-carrying conductor. 

Let us assume that this conductor is same as the conductor that we saw in the previous slide. 

Suppose if we want to analyze a conductor excited with a voltage source and if the current is not 

known then we have to go back to use the formulation that we have discussed in the lecture. So if 

we excite the conductor by a voltage source then voltage will be known and the current will be 

unknown.  

But we can simplify the analysis by exciting the massive conductor with a current source with 

some frequency of excitation and the currents get redistributed due to skin effect. For analysis 

purpose we feed the conductor with a current source operating at some frequency, because current 

fed systems are easier to analyze as compared to voltage fed systems. That is why we have used 

current fed FE formulation. 

The current distribution shown in the above slide represents skin effect. This distribution can be 

obtained by using the code developed using the discussed formulation. In the figure, we can see 

the current is trying to be more at the surface of the conductor and less amount of current is in 

inner parts of the conductor. This effect can be simply understood if we analyze the conductor as 

made up of small annular conductors then we will find that the inside elements of the whole 

conductor are linking more flux as compared to the outside elements. So the corresponding 



inductance of the inner part of the conductor is more as compared to that of the outer part and 

hence current tries to be at the surface. 
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Now, if conductor is brought near a conducting part or a plate which is shown in the above figure. 

If the plate is made of mild steel in which eddy currents are induced then the skin effect gets 

skewed by the induced currents.  

This phenomenon can be understood by considering the two conductors as two windings (say LV 

and HV windings) because the source current will induced currents in the conducting plate. The 

flux linkages will be maximum in the part between the two windings (or conductors). The flux 

linkages and so the inductance will be less in the parts of the conductors, which are facing each 

other.  

That is why the current tries to concentrate more on the parts that are facing each other as shown 

in the above field plot. In basics also we have seen that the proximity effect further increases the 

AC resistance as the effective area decreases further because the current is now trying to 

concentrate more on the parts that are facing each other.  
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Consider two conductors carrying currents in the same direction as shown in the following figure.  

 

So, if the currents are in the same direction then the corresponding flux will be as shown in the 

above figure. In the figure, we can observe that the part of the two conductors, which are facing 

each other will link most of the flux. So, the corresponding impedance offered is more and that is 

why current distribution is less in this region.  

Whereas the flux linking the parts which are not facing each other is less and the corresponding 

impedance will be lower and hence the current distribution will be more.   

To see the corresponding flux plot and understand more about these flux linkages and 

corresponding current distribution, see an experiment in the following link of the virtual lab.  

 

In the above experiment, one can verify that the two parts where more flux linkage is there, there 

current will reduce.  
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Now, consider the opposite case where the direction of currents are opposite. This case is similar 

to the problem that we have seen in one of the previous slide.   

 

So, in the case given in the above slide also the currents are concentrating in the faces which are 

facing each other. Again, the directions of currents in the above figure are opposite.  

This way we can understand skin and proximity effects. The examples that we have seen in this 

lecture are very representative simple examples. But, many of our devices like transformers and 

motors are fed by power electronic circuits with frequencies greater than 50 Hz and excitations 

with a lot of harmonics then the skin and proximity effects will increase substantially.  

For such problems also the formulation that we have seen in this lecture can be used to find out 

the increase in losses and temperature rise in such windings. So, always remember that the 



complexity of the analysis further goes up if we model individual conductors in the winding but 

the formulation remains the same. However, complexity in terms of geometry and meshing will 

go up and the efforts in terms of formulation remain the same, so that is the advantage of FE 

analysis. 
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