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FE Analysis of Rotating Machines 

 

Welcome to lecture 34. We will continue our discussion where we stopped in the previous lecture. 
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In this lecture, we will briefly review the application of FE modelling for analysis of rotating 

machines. We will take a permanent magnet machine as an example for the purpose. Next, we will 

see how various engineering fields like thermal, structural, fluid, etc., are coupled to 

electromagnetic fields in a typical electrical equipment or machine. External circuits are also 

coupled to electric and magnetic fields. In this course, we will study FE formulation for voltage 

and current fed devices. To start with, in this lecture, we will study FE formulations for voltage 

fed devices and in a later lecture we will see the corresponding formulation for current fed devices.   
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Any rotating machine can be modeled by using the following equivalent circuit.  

 

In this circuit, we have terminal voltage (𝑉𝑡) and induced voltage (𝑒) and the current i. The 

direction of current will be decided based upon whether we are analyzing a motor or a generator. 

Now, based on the direction of the current shown in the above figure, the circuit is representing a 

motoring operation. So, in the previous lecture, we are discussing surface mounted permanent 

magnet machines that means on the rotor surface we have permanents magnets mounted.  

I am assuming that those who are listening to this course have some background of these machines 

and they know some basic operational and design or constructional details of these machines. So, 

they can appreciate what is being said here. Here, now the above circuit is representing a motoring 

operation and then we have current and induced voltage waveforms as shown in the following 

figure. 



 

So, to produce constant torque, the current should be fed into the machine as shown in the 

equivalent circuit. As the induced voltage is of trapezoidal form to have a constant torque which 

is proportional to product of induced emf and the current then we have to have current waveform 

which is of rectangular pulses as shown in the above figure. This current waveform can be 

controlled by using power electronic converters.  

As long as we maintain the constancy of induced emf and current, we will get constant torque. So, 

as induced emf opposes the flow of current, terminal voltage 𝑉𝑡 is varied to maintain the required 

phase current. So, the moment the rotating machine starts rotating we have induced emf. The 

induced emf is going to oppose the current which is flowing into the motor. To maintain this 

current as constant, 𝑉𝑡 has to be adjusted by the source. Effectively, the source is going to supply 

additional 𝑒𝑖 power because when the speed was 0, 𝑒 =  0. When the speed is non zero the 

corresponding induced voltage 𝑒𝑖 will be there in opposition to the source effectively.  

So, the source has to supply the power 𝑒𝑖, here, i is constant. The 𝑒𝑖 power is converted into the 

mechanical torque at the shaft. The power or energy transferred from electrical to the mechanical 

system is 𝑒𝑖. So, now this is a motoring operation.  
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The same thing is true for generating mode with some changes. Here again the same equivalent 

circuit can be used with the current direction kept as same. But actually when the machine is acting 

as a generator the direction of current will reverse. For generating operation, the current actually 

will go from 𝑒 to 𝑉𝑡. So, as the the current direction is shown opposite, the sign of current is 

changed (shown in the following figure) as compared to the previous slide.  

 

But if we reverse the direction of current in the equivalent circuit which represents the actual 

generating operation then the current waveform will be like the way we saw in the previous slide 

and the same logic applies.  

Here, again to produce a constant torque, phase current should be in phase with the induced emf. 

The induced emf feeds the current to the terminal voltage and to vary the terminal voltage, the 



speed of the mechanical system must be varied and the corresponding power transferred from 

mechanical to the electrical system is again 𝑒𝑖. So, the direction of power flow is just reversed in 

this case. 

(Refer Slide Time: 05:39) 

 

The induced emf is generally sinusoidal in case of permanent magnet synchronous machines and 

that can be achieved by using distributed windings in space. It can be also achieved by using 

concentrated winding with some changes such as pole shaping. Whereas in case of brushless DC 

machines we generally have trapezoidal emf distribution in the space and that can be achieved by 

using concentrated windings.  

Sinusoidal induced emf machines when fed with sinusoidal current excitation produce constant 

torque. Similarly, trapezoidal induced emf machines with square wave current excitation (as we 

have seen in the previous slides) produce constant torque. The machine’s torque ripple and cogging 

torque can be predicted from induced voltage waveforms.  

So, if we know the induced emf waveforms we can predict the performance parameters of a 

machine accordingly. This is the importance of analysis that we have seen in the previous lecture. 

In such FE analysis, even though we may have a motor it is generally simulated as a generator to 

extract induced emf waveform. This is done for convenience only.  

 



(Refer Slide Time: 07:09) 

 

Now, we will see a new topic, coupled field systems. In the second lecture, we had explained about 

the diagram shown in the above slide. In this figure, couple fields in a transformer are explained. 

So, in any electromagnetic device like transformer, motor, generator we have so many physical 

fields. For example in a transformer, we have magnetic field coupled with electric field, thermal 

field, fluid field, acoustic field and circuits. Then there are coupling parameters between any of 

these two fields or systems. For example, between magnetic field and thermal field, the coupling 

parameters are eddy and hysteresis losses and temperature dependency of electromagnetic 

properties. Basically, theses losses are produced due to alternating magnetic field and they lead to 

temperature rise which in turn may change the permeability and conductivity. This change in 

electromagnetic properties would change the magnetic field. So, the coupling parameters are losses 

and temperature dependency of electromagnetic properties. 

In this course we are going to see coupled circuit field computations. We are not going to formulate 

thermal and mechanical fields coupled to electromagnetic fields. But a detailed discussion on how 

to couple thermal and mechanical fields to electromagnetic fields can be found in the reference 

given in the above slide and some of the many other good books and papers on the subject are 

mentioned in the reference given in the above slide. So now, we will start our discussion on 

coupled circuit field computations. 
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First, we will see voltage fed coupled circuit field analysis which is quite common in  most of the 

devices. In fact all electrical devices and equipment are typically voltage fed. For example, we 

always see some voltage source feeding a transformer or a motor or a generator. So, the governing 

field equation is given below 

 

We are now quite familiar with the above equation. The J in the above equation is now written as 

𝑁𝐼/𝑆 as given in the following equation.  Here, S is the cross sectional area of coil, through which 

the current is following.  

 

 The functional for the above PDE is given in the following equation. 

𝐹(𝐴) =
1

2
∫

1

𝜇
|𝛻𝐴|2𝑑𝑣

𝑣

− ∫
𝑁𝐼

𝑆
𝐴𝑑𝑣

𝑣

 

We have seen this equation earlier. In the above functional expression, instead of  𝐽𝐴𝑑𝑣  we have 

𝑁𝐼

𝑆
𝐴𝑑𝑣. The 𝑑𝑣 will become 𝑑𝑆(= 𝑑𝑥𝑑𝑦) when we consider 2D approximation. After applying 

the FEM procedure, the first integral in the above equation will become  



1

2
∑ ∑ ∑ ∫

1

𝜇
𝐴𝑖

𝑒 (∇𝑁𝑖(𝑥, 𝑦) ⋅ ∇𝑁𝑗(𝑥, 𝑦)) 𝐴𝑗
𝑒𝑑𝑥𝑑𝑦

𝑆𝑒

3

𝑗=1

3

𝑖=1𝑒

 

We have seen the derivation for this expression in the earlier lectures. So, for each element we will 

have 9 terms and then the summation over all the elements will add up to get the total energy.  The 

above expression corresponds to one energy term. The second energy term is given below which 

is on account of the source current J (=
𝑁𝐼

𝑆
) in this formulation.  

𝑁𝐼

𝑆
∑ ∑ ∫ 𝑁𝑖(𝑥, 𝑦)𝐴𝑖

𝑒𝑑𝑥𝑑𝑦

𝑆𝑒

3

𝑖=1𝑒

 

In the above expression, the inner term leads to 3 terms that correspond to 3 nodes of a triangular 

element. We have seen that earlier J (or 𝑁𝐼/𝑆) gets apportioned to 
𝐽∆

3
 or 

𝑁𝐼

𝑆

∆

3
 to the 3 nodes of the 

corresponding element. Also, remember that when the functional gets minimized with respect to 

the unknown variables 𝐴𝑖s then one 𝐴𝑖 in the above two terms will be cancelled. That is the reason 

why only 
𝑁𝐼

𝑆

∆

3
 corresponds to the above term. Because 

1

𝑆
∬ 𝑁𝐼𝑑𝑥𝑑𝑦 is nothing but 

𝑁

𝑆

∆

3
. The variable 

I needs to be determined so it comes in the following matrix equation as {𝐼}.  

[𝐶]{𝐴} − {𝐵}{𝐼} = 0 

The entries of element level 𝐵𝑒 matrix is 
𝑁

𝑆

∆

3
 and when we form global matrix equation the source 

matrix will become 𝐵. So the terms in the above matrix equation are global level matrices.  

The entries of local level element coefficient matrix C will be  

∫
1

2𝜇
(∇𝑁𝑖(𝑥, 𝑦) ⋅ ∇𝑁𝑗(𝑥, 𝑦)) 𝑑𝑥𝑑𝑦

𝑆𝑒

 

When we actually evaluate the sum over all the elements, the element level matrices will combine 

to form global coefficient matrix 𝐶. {𝐴} is the unknown magnetic vector potentials at all the nodes 

in the domain.  
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In this formulation, the new part is the following circuit equation.  

{𝑈} = 𝑗𝜔𝑁{ψ} + [𝑅𝑒𝑥𝑡]{I } + 𝑗𝜔[𝐿𝑒𝑥𝑡]{I } 

Consider a device which is meshed as given in the following figure 

 

The corresponding finite element mesh is shown with red triangles in the above figure. This field 

model is fed by an external circuit with voltage source U, 𝑅𝑒𝑥𝑡, and 𝐿𝑒𝑥𝑡. The field model or the 

electromagnetic device is represented by the induced voltage at its terminal. So, this induced 

voltage is the corresponding field parameter in the circuit equation.  

The induced voltage at the terminals of the electromagnetic device is given by 𝑁
𝑑𝜓

𝑑𝑡
.  Then 

𝑑

𝑑𝑡
 is 

replaced by 𝑗𝜔. So, 𝑗𝜔𝑁𝜓 is the corresponding terminal induced voltage at this device. Now, we 

are forming the following circuit equation by writing the KVL for the loop formed by the external 

circuit and the field model.  

{𝑈} = 𝑗𝜔𝑁{ψ} + [𝑅𝑒𝑥𝑡]{I } + 𝑗𝜔[𝐿𝑒𝑥𝑡]{I } 



The above equation means that the external source voltage is equal to the corresponding terminal 

induced voltage at the device (𝑗𝜔𝑁{ψ}) plus [𝑅𝑒𝑥𝑡]{I }  and 𝑗𝜔[𝐿𝑒𝑥𝑡]{I }.   

Now, in the above equation, 𝑈 and 𝐼 are in curly brackets meaning they are column vectors. Then, 

we replace this {ψ} term in the above equation by the term 
𝑙

𝑆
{∫ 𝐴𝑑𝑠

𝑠
} by invoking the theory that 

we saw in lecture 24. In fact in the previous topic also we have invoked this theory when we are 

calculating the flux passing through any two points in case of a two dimensional problem.   

Here, we are assuming that we are modelling both sides of the coil. Suppose the field domain in 

the above figure is a coil with current going in from one terminal and current coming out from the 

other terminal. So, when we are taking 𝐴 in the circuit equation then it will be average value of A. 

So, using the term 
𝑙

𝑆
{∫ 𝐴𝑑𝑠

𝑠
} average value of A is calculated over the coil with so many elements.  

We are calculating average value of A by evaluating ∫ 𝐴𝑑𝑠
𝑠

 over each element and then it is divided 

by the corresponding cross sectional area of the coil as we have seen in the previous lecture. 

Suppose if we are considering +A for one coil side and the direction of current is cross and for the 

other coil side if we are considering –A then the current will be dot.   

So, their difference will represent the flux passing through the area formed by the two coil sides 

and the corresponding voltage induced in the coil. That is what is formulated in the above equation. 

When we evaluate 𝑙 ∫ 𝐴𝑑𝑠
𝑠

, the integration will be over the entire coil area.  

The term ∫ 𝐴𝑑𝑠
𝑠

  will be the total magnetic potential difference between the two points and when 

that term is multiplied by 𝑁𝑙 will give the flux linkage with the coil. Then, the flux linkages 

multiplied by 𝑗𝜔 will give the induced voltage. The value of 𝑙 will be eventually taken as one 

because we are going to do per meter depth calculations. When we substitute 𝐴 by the  approximate 

potential expression we get,   

𝜓 = ∑ ∑ 𝐴𝑖
𝑒 ∫ 𝑁𝑖(𝑥, 𝑦)𝑑𝑥𝑑𝑦

𝑆𝑒

3

𝑖=1𝑒

 

Then, we replace ∫ 𝑁𝑖(𝑥, 𝑦)𝑑𝑥𝑑𝑦
𝑆𝑒

 by the matrix 𝐺′ which is given by the following expression 



{𝐺𝑒} =
𝑁

𝑆

∆

3
[
1
1
1

] 

The entries of the matrix are again calculated by using the following formula. 

∫(𝑁1(𝑥, 𝑦))
𝑙
(𝑁2(𝑥, 𝑦))

𝑚
(𝑁3(𝑥, 𝑦))

𝑛
𝑑𝑥𝑑𝑦

𝑆𝑒

=
𝑙! 𝑚! 𝑛!

(𝑙 + 𝑚 + 𝑛 + 2)!
2Δ𝑒 

By the above formula, we will get the expressions of the entries as 
𝑁

𝑆

∆

3
. The 

∆

3
 term will be given 

by the above integral. On the left hand side of the circuit equation the size of the source matrix {𝑈} 

is 1 × 1 because in this problem we have only one voltage. 

So, now we are ready to combine both field and circuit equations. First we will see the following 

circuit equation.  

{𝑈} = 𝑗𝜔{𝐺}′{𝐴} + [𝑅𝑒𝑥𝑡 + 𝑗𝜔𝐿𝑒𝑥𝑡]{𝐼} 

 Then we have the following field equation,  

[𝐶]{𝐴} − {𝐵}{𝐼} = 0 

So, now the coupled circuit field equation is as given below 

[
[𝐶] −{𝐵} 

𝑗𝜔{𝐺}′ [𝑅𝑒𝑥𝑡 + 𝑗𝜔𝐿𝑒𝑥𝑡]
] [

{𝐴}
{𝐼}

] = [
0
𝑈

] 

This matrix equation is formed by combining the field and circuit equations. Here, matrices 𝐵 and 

𝐺 are incidentally equal because 𝑙 = 1.  

We have to remember that in the expression for matrix B there was no 𝑙 and the entries of the 

matrix is simply 
𝑁

𝑆

∆

3
. Whereas in the expression of 𝐺, we have 𝑙. If 𝑙 = 1 then we get 𝐺 = 𝐵.  But 

if we are doing calculations for 𝑙 = 5 m depth then 𝐺 ≠ 𝐵 because matrix 𝐺 will get multiplied by 

5. Since 𝑙 = 1 in this case, matrices 𝐺 and 𝐵 will become equal.  

So, when we use this formulation for coding a particular problem then we can do various other 

analyses, particularly transformers and rotating machines excited by external circuits. In the next 

lecture, we will see how to do short circuit analysis of a single-phase transformer. Thank you.   
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