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Welcome to the 33rd lecture. In this lecture, we will see modelling of rotating machines. In time 

harmonic simulation when we analyzed torque speed characteristics of an induction motor we took 

one condition of the stator and motor position. So, that analysis was like a static condition.  

(Refer Slide Time: 00:46) 

 

In that analysis, we varied the slip and then we calculated the torque from rotor losses. That 

analysis was like a static condition. So, if we are formulating simulation for a fixed rotor structure 

in our simulation then we have the option of modelling a section of the motor using either 

Neumann or Dirichlet conditions. For example, in case a of the above slide, one pole of the 

machine is modelled. In this case, A = 0 is always imposed on the outer and inner circumferential 

boundaries. Because this condition will contain all the flux within the stator structure. Now here 

on straight-line boundaries of the motor we have imposed homogenous Neumann condition 

because the flux contours are going normal to these two boundaries.  

So, homogenous Neumann conditions are imposed on the two straight-line boundaries.  But if the 

same section of the motor is modelled with two half poles instead of one full pole then the flux 

pattern in the motor section will be as shown in case b.  



Here, for this case b we have to impose A = 0 for the circular and straight-line boundaries. This 

will make the flux parallel condition as shown in the figure whereas in case a the flux was normal 

on the two straight line boundaries. So, when we are modelling two half poles in the motor section  

then we have to impose flux parallel condition (A = 0) on these two straight-line boundaries.   

The third case is if we want to further simplify the motor section by dividing it into half as shown 

in the figure that corresponds to case c. For this, we can cut the model further over the radial 

symmetry line.  Now, we can see on one of the radial straight lines the flux is normal. So, then we 

can impose 
𝜕𝐴

𝜕𝑛
= 0  (homogenous Neumann condition). Now, the model becomes more simpler. 

So, cases a and b correspond to one-fourth models and case c becomes one-eight model. So, in 

case c we have Dirichlet and Neumann conditions applied on the two straight line boundaries. 

Depending upon which section of the motor we consider, either we will have to impose 

homogenous Neumann condition or Dirichlet condition or combination of both conditions.   

(Refer Slide Time: 04:20) 

 

Going further, in the example shown in the above slide we have modelled two poles of a six-pole 

permanent magnet synchronous motor. The flux plot on the left hand side is for a section of the 

motor with magnets on its rotor surface and we have imposed homogenous Neumann boundary 

conditions on the two straight-line boundaries. We have imposed A = 0 on the outermost and 

innermost circular boundaries.  It should be noted that, A = 0 is imposed on the innermost boundary 



which is the outer boundary of the shaft because we are considering that the shaft is made from a 

non-magnetic material and the flux plot shown on the left hand side is for a static condition. 

If the rotor is moved by a certain angle as shown in the flux plot on the right hand side of the above 

slide we can see that the flux plot is distorted. On the outermost and the innermost circular 

boundaries we can still define A equal to 0. But on the other two straight line boundaries the flux 

is neither parallel nor perpendicular and they cross the boundary in arbitrary directions. Therefore, 

for the two straight-line boundaries, Dirichlet or Neumann boundary conditions are not applicable. 

However, we still want to simplify the model and we will see how to do that.   

(Refer Slide Time: 06:16) 

 

So, we can do that by using periodic and antiperiodic boundary conditions. First let us consider 

periodic boundary condition. Again, consider a section of a rotating machine which is shown in 

the figure given in the above slide. This section of motor corresponds to 120o mechanical part of 

the motor. If we consider even number of poles then we have the following equation  

𝐴𝑧 (𝜌, ∅ + 2𝑘
𝜋

𝑃
) = 𝐴𝑧(𝜌, ∅) 

This equation represents that we are equating the potential values on the boundary at an angle ∅ 

with the boundary at ∅ + 2𝑘
𝜋

𝑃
.  So, remember that on these two boundaries neither homogenous 

Neumann nor Dirichlet condition is imposed.  



So, here in this expression k is the number of poles to be considered in the section that we are 

modelling. In this case, k is even number and then we are imposing periodic boundary condition.  

Here, on the two circular boundaries A = 0 is imposed. Whereas on the two straight-line boundaries 

which we are forcing 𝐴2 = 𝐴1. So, now let us see two examples.  

For a six-pole machine, if we want to model a section with two poles as shown in the figure given 

in the above slide  then we have to take 𝑘 = 2 and 𝑃 = 6. So, the term 2𝑘
𝜋

𝑃
 becomes 

2𝜋

3
. So, that 

means whatever is the value of 𝐴𝑧 at 𝜙 is equal to 𝐴𝑧 at 𝜙 +
2𝜋

3
. So, if 𝜙 = 0 then 𝜙 +

2𝜋

3
 is equal 

to 120o.  Now, let us consider a two pole machine if we have to model both the poles then k is even 

number and it is equal to 2 then obviously we have to model all 360o. 

That is obvious because if 𝑃 = 2 and 𝑘 = 2 then 2𝑘
𝜋

𝑃
= 2𝜋. So, that means effectively we have 

to model the whole geometry. That does not give any advantage but we discussed this for 

confirming the above equation is indeed correct for a two pole machine. But we can see the 

advantage if we are modelling only one third of the geometry. We will get the full flux plot by 

using the solution for the 120o part.   

(Refer Slide Time: 09:50) 

 

Now, in this slide, we will understand antiperiodic boundary conditions which are applicable when 

we are modelling odd numbers of poles. The corresponding equation for this boundary condition 

is given below. 



𝐴𝑧 (𝜌, ∅ + 2𝑘
𝜋

𝑃
) = −𝐴𝑧(𝜌, ∅) 

In the above equation, we equate potentials on the two boundaries but with a negative sign. The 

section shown in the above figure corresponds to a permanent magnet synchronous motor. The 

magnetic vector potential on one of the straight line boundaries equals to the negative of magnetic 

vector potential on the other straight line boundary. Let us understand intuitively why the potentials 

on these two boundaries should be equal with an opposite sign. In this slide, a section with one 

pole is modelled and flux pattern will be such that half the flux will cross one straight line boundary 

and the other half will take the other path and cross the other boundary.  

Fictitious current sources producing this pattern can be placed around the region of the permanent 

magnet with dot on one side of the magnet and cross on the other side. So, that means in one side 

of the magnet current is coming out of the paper and on the other side current is going into the 

paper as per the right hand rule. Since the directions of the fictitious current sources are opposite, 

the corresponding magnetic vector potential values on the two straight line boundaries will also 

have opposite signs.   

Now let us see an example of a six-pole machine with one pole being modelled. For this case 𝑃 =

6 and 𝑘 = 1, so we will get the value of 2𝑘
𝜋

𝑃
 as 

𝜋

3
.  Hence, we need to model 60o mechanical of 

the total motor geometry with antiperiodic boundary conditions specified on the two straight line 

boundaries. In another example of  a two pole machine, if one pole is modelled then 𝑃 = 2 and 

𝑘 = 1, so we will get 2𝑘
𝜋

𝑃
 as 𝜋.  So we need to model 180o mechanical of the entire motor 

geometry with antiperiodic boundary conditions on the straight line boundaries.  
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Going further, for the geometry given in the above slide, periodic boundary conditions are applied 

only to boundary 2. However, leaving boundary 1 without applying a boundary conditions leads 

to the automatic imposition of homogenous Neumann boundary conditions (Refer L12, slide 6 and 

L22, slide 7). It should be noted that the imposition of homogenous Neumann boundary condition 

means forcing 
𝜕𝐴𝑧

𝜕𝑛
= 0.  Forcing this boundary condition leads to flux crossing perpendicular to 

the boundary. But, this is not what we want, as explained earlier when the rotor is moving the flux 

is neither perpendicular nor parallel to the straight line boundaries. Therefore, we need to consider 

the following contour integral which is obtained after writing the weighted residual statement for 

an ith node of a finite element  (Refer L22).  

𝐼 =
1

𝜇 
∮ [(𝑁𝑖

𝑒 𝜕𝐴𝑧

𝜕𝑥
) 𝐚̂𝑥 + (𝑁𝑖

𝑒 𝜕𝐴𝑧

𝜕𝑦
) 𝐚̂𝑦]

𝜏

⋅ 𝐚̂𝑛𝑑𝜏 

In this case of a rotating structure, the above integral does not lead to a boundary condition matrix 

([𝐵𝑏]) which we discussed in L28. Because in this problem a constant value of non-homogenous 

Neumann boundary condition is not imposed on the boundary.  

This integral in fact leads to a square matrix whose number of rows and columns equals the number 

of nodes in the entire problem domain. This matrix will have non-zero entries only for the nodes 

on boundary 1. Let us consider a part of boundary 1 with 3 elements as shown in the following 

figure. 



 

For element 1, let node 1 be the local node number 1, node 2 be the local node number 2, and node 

5 be the local node number 3. Then, approximating the magnetic potential in element 1 with the 

following equation. 

𝐴𝑧
(1)

= ∑ 𝑁𝑖
(1)

𝐴𝑖
(1)

3

𝑖=1

= ∑
1

2∆
(𝑎𝑖 + 𝑃𝑖𝑥 + 𝑄𝑖𝑦)𝐴𝑖

(1)

3

𝑖=1

 

The expressions of 𝑎1, 𝑎2, and 𝑎3 are given below. 

𝑎1 = 𝑥2𝑦3 − 𝑥3𝑦2,  𝑎2 = 𝑥3𝑦1 − 𝑥1𝑦3,  𝑎3 = 𝑥1𝑦2 − 𝑥2𝑦1 

We have seen these expression earlier. 

For simplicity, to understand the mathematical formulation consider the boundary 1 as a horizontal 

line with 𝐚̂𝑛 = −𝐚̂𝑦. That means normal to the boundary will be in negative y direction and 𝑑𝜏 

will be dx. Let this case be the initial position of the rotor structure. It should be noted that the 

angle of the rotor part of the boundary 1 changes with the rotor  angle and 𝐚̂𝑛 will be in an arbitrary 

direction. But the part of boundary that corresponds to the stator will always be horizontal. 

So, the above closed contour integral for node 1 reduces to the following expression. 

𝐼 =
1

𝜇 
∫ [(𝑁1

(1) 𝜕𝐴𝑧
(1)

𝜕𝑥
) 𝐚̂𝑥 + (𝑁1

(1) 𝜕𝐴𝑧
(1)

𝜕𝑦
) 𝐚̂𝑦] ⋅ 𝐚̂𝑛𝑑𝜏

𝑛𝑜𝑑𝑒 2

𝑛𝑜𝑑𝑒 1

 

Because, the value of the integral for the two inner edges of the element 1 will get cancelled when 

we form the global level matrices (Refer L28). Hence, the integration will be only from node 1 to 

node 2. So, the integration will be non zero only for the edge joining nodes 1 and 2 and for these 

two edges of the element 1, the integration will be reduced to 0.  
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As seen on the previous slide, 𝐚̂𝑛 = −𝐚̂𝑦 and 𝑑𝜏 is equal to dx, the integral I on the previous slide 

reduces to the following expression.  

𝐼 = −
1

𝜇 
∫ (𝑁1

(1) 𝜕𝐴𝑧
(1)

𝜕𝑦
) 𝑑𝑥

𝑛𝑜𝑑𝑒 2

𝑛𝑜𝑑𝑒 1

 

Using the approximate function for 𝐴𝑧
(1)

 and remembering that the shape function of node 3 of 

element 1 is equal to 0 on the edge joining nodes 1 and 2, the differential term in the integral I is 

simplified as given below. 

 

Also, 𝐴1
(1)

 and 𝐴2
(1)

 of element 1 are independent on x and y and 𝑁𝑖(shape functions) expressions 

are functions of x and y. Therefore, the differential term in the above integral reduces to the above 

expression. Then, substituting the above term in the integral we get,  

𝐼 = −
1

𝜇 
∫ (𝑁1

(1)
(

𝑄1

2∆
𝐴1

(1)
+

𝑄2

2∆
𝐴2

(1)
)) 𝑑𝑥

𝑛𝑜𝑑𝑒 2

𝑛𝑜𝑑𝑒 1

 



In the above integral only shape function 𝑁1 is a function of  x. So only 𝑁1
(1)

 will appears under 

the integral sign and the term (
𝑄1

2∆
𝐴1

(1)
+

𝑄2

2∆
𝐴2

(1)
) is taken outside the integral.  
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Going further, the integral I can be simplified by substituting the expression for 𝑁1
(1)

 and then 

evaluate the integral to get the following expression.  

 

We can verify the derivation by substituting the expression of 𝑁1
(1)

 and then integrating with 

respect to dx. Now, this whole expression is rearranged to write it in matrix multiplication form as 

given below. 

 



The row matrix {𝐶𝑏
𝑒(1,1) 𝐶𝑏

𝑒(1,2) 𝐶𝑏
𝑒(1,3)} is multiplied to the column matrix{

𝐴1
(1)

𝐴2
(1)

𝐴3
(1)

}. Here, 

𝐶𝑏
𝑒(1,3) = 0  because the node 3 which is global node number 5 has no contribution to the integral 

as explained on the previous slide. Thus, at the element level we get the following equation when 

we apply the FEM procedure for Poisson’s equation.  

[𝐶𝑒]{𝐴𝑒} − [𝐶𝑏
𝑒]{𝐴𝑒} = {𝐵𝐽

𝑒} 

When the Poisson’s equation is modelled using FEM the formulation leads to the equation 

[𝐶𝑒]{𝐴𝑒} = {𝐵𝐽
𝑒}. Now here, because of periodic boundary conditions, we have one more term 

[𝐶𝑏
𝑒]{𝐴𝑒} at the element level. As explained on slide 4A, [𝐶𝑏

𝑒] will be a 3 × 3 matrix and when we 

form the global system of equations this matrix will be 𝑛 × 𝑛 matrix. So, periodic boundary 

conditions are taken into account by adding the term [𝐶𝑏
𝑒]{𝐴𝑒} at the element level and the 

corresponding term at the global level matrix equation. Then we can solve the problem by using 

the finite element procedure to get the field solution. 

(Refer Slide Time: 24:02) 

 

Now, in this slide, we will understand how to model rotation of a rotor structure. In the air gap 

(zoomed portion in the above slide), we can see that there is a red curve which separates a fixed 

mesh and a moving mesh. So, on the right hand side of the red curve, there will be a fixed mesh 



(stator part) and on the left side of the red curve in the gap, we will have one layer of mesh which 

will be attached to the rotor and this portion will move along with the rotor. So, we will have at 

least two layers of mesh in the air gap to model the rotation effectively. 

(Refer Slide Time: 24:59) 

 

What happens in the air gap region? In the two layer mesh shown in the following figure, the center 

line between the two layers is the red curve that we saw in the earlier slide.  

 

The upper part of the above mesh is attached to the stator, and it is a fixed mesh. The lower part 

of the above mesh is attached to the rotor and it moves along with the rotor. The above mesh 

corresponds to the initial instant. The following mesh corresponds to the next instant at which the 

rotor has moved 

 

Now, the point B has moved and the point A of fixed mesh has not moved.  

So, when the position point B is changed it is actually joined to the nearest point (point A) on the 

fixed mesh. For the above configuration, the nearest point is still A. The point next to point A is 



still farther from B. So, that is why B is joined to A and then the other nodes are respectively joined 

to other respective nodes. 

Now, the moving part of the mesh is moved further as shown in the following figure. 

 

The node next to point A will be closer as compared to node A. So, the node B is joined to the 

point next to node A and similarly, for all the other nodes. Effectively, one more node (A1) gets 

added to the mesh. So, the main thing in this moving band method is that the number of elements 

are fixed but the number of nodes goes on increasing as the lower part moves. This will continue 

upto the instant when the B point comes to the end of the stationary part. So, moment we solve 

from the starting point to the ending point of the stationary part, we would have completed one set 

of simulations. 

(Refer Slide Time: 27:20) 

 

Here, at t=0  we have created the mesh shown in the above slide and then we will see what happens. 

In the above figure, there is an air gap and slots and we can see that each of the slots has two coil 

sides.  

 



(Refer Slide Time: 27:44) 

 

Now in the above slide, we can see that the rotor has moved so the associated moving mesh in the 

air gap has also moved. In this position of the rotor no new node is added yet but the mesh has got 

tilted or distorted. 

(Refer Slide Time: 28:10) 

 

In the above slide, we can see that the rotor has moved further and two new nodes are added. When 

the rotor has moved further, the number of nodes increase but the number of elements remains the 

same. 

The boundary conditions are assigned, based on the number of poles that are modelled.   
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Depending on the number of poles or fraction of poles modelled, we can reduce the geometry  and 

exploit the boundary conditions. So, if we have modelled even number of poles then we have to 

apply periodic boundary conditions or if odd number of poles are modelled then anti-periodic 

boundary conditions are imposed.  

(Refer Slide Time: 29:38) 

 

 

In this slide, the flux plot is for a section of six pole permanent magnet synchronous motor and 

rotation of the rotor is modelled. Magnets are placed on its rotor and windings are on stator. In the 



considered section, two poles of the motor are modeled. The field solution is obtained after 

imposing periodic boundary conditions that are formulated in the earlier slides. Because of 

periodic boundary conditions whatever flux we see on one side of the rotor and stator parts appears 

on the other side also. In the flux plot, in both the parts we can see that continuity of flux is 

maintained and this will be demonstrated on the next slide. 

(Refer Slide Time: 30:31) 

 

 

 

Now, in the above slide, the flux plot in the complete motor structure is shown. Assuming the 

periodic boundary conditions, we have solved for 120o mechanical of the motor, but using that 

solution we have obtained flux plot for the entire 360o structure. The flux pattern in the region of 

120o structure is repeated twice in the remaining 240o. Also, we can see that the flux continuity is 

maintained at the interfaces.  
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Let us refresh ourselves with the procedure for calculating flux linkages of a coil we studied in 

L24. Consider a coil with two coil sides 1 and 2 as shown in the following figure.  

 

These coils are one pole pitch apart. The total flux linkage of the coils is given by the following 

formula,  

 

In the above expression, 𝐴𝑐1 and 𝐴𝑐2 are the average values of magnetic vector potentials of the 

two coil sides. Because of symmetry 𝐴𝑐1 = 𝐴𝑐2 and after some mathematical manipulations we 

get the above formula.  
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 The flux linkages for a jth phase coil of the considered machine is given below.  

 

In the above expression, factor 2 appears if we are modelling only one coil side. If both coil sides 

are modelled, then factor 2 will not appear.   

We know that flux is defined by ∮ 𝐀 ∙ 𝑑𝐥
 

𝑙
 and summation i goes from 1 to 3.  𝐴𝑖

𝑒/3 gives the average 

value of A over the triangular element under consideration. Then, summation of the average A 

multiplied by the element area divided by the coil side’s cross sectional area gives the average 

value of A over the coil side containing 𝑛𝑒 triangular elements. The overall average A multiplied 

by length l gives the flux and when it is multiplied by number of turns N and the number of pole 

pairs 𝑛𝑃 gives the total flux linkages of the coil. 

The element level 𝐺𝑗
𝑒 matrix is given by the following expression.  

 



When we assemble element level matrices by executing the summation over all the elements of 

the coil sides, we get the flux linkages in terms of global A and G matrices. 
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Now, the flux linkage expression in the previous slide is modified as given below by dropping the 

factor 2 because in this simulation result shown on slide 10 of the lecture, we have modeled only 

one pole pair.  

 

If we have model only a single pole then we have to use factor 2 in the above expression. Hence 

dropping the factor 2 and following the same procedure discussed in the previous slide we get the 

above expression of  the flux linkage and element level matrices as given below. 

 

The discussed formulation is then applied to calculate flux linkages with stator coils for the PMSM 

geometry, shown in slide 10. The flux linkages of phases a, b, and c are shown in the following 

figure.  



 

It should be noted that the flux linkage are calculated for different rotor positions which are 

indicated on the x axis of the above figure. This means at every rotor position we calculate flux 

linkages using the magnetostatic formulation. Thank you. 
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