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Welcome to lecture 32. In this lecture, we will derive the FEM formulation for permanent magnets. 
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We start with the following governing equation which we have seen in the previous lecture.  

( )ο rv    = +A J Μ
 

In the above equation, J is due to free current and ∇ × (𝜇𝜊𝜈𝚳𝑟) is representing the source due to 

a permanent magnet. Now, in the above equation subscript r will be dropped. So, we should always 

remember that M in the equations given in the above slide  is actually Mr and subscript r is dropped 

for simplicity. 

So, now we will apply the weighted residual method to the above PDE. In weighted residual 

method, we integrate the weight into residue over the domain and equate it to 0. The residue will 

be there because we have substituted the approximate solution function and we minimize the 

residue in the weighted integral sense. 



Now, as compared to the weighted residual approach that we saw in the previous lecture there is 

one difference here. In the previous lecture, it was a purely scalar formulation because it was two-

dimensional formulation with all the vectors in z direction. Since, all the vectors in the governing 

equation are  in z direction, so the direction was fixed and only magnitude had to be determined. 
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But here, M is a vector in xy plane and its direction is not along z direction, so we have to develop 

the formulation in vector notation. So, that is why the weighting function is also a vector because 

residue is a vector. So, now, we are considering Galerkin’s approach and we took the weighting 

function as shape function and the only difference is both functions are vectors.  

So, we are using the following vector identity  
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Using this vector identity the first term of the weighted residual statement can be modified as given 

below.  
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For the second term in the above equation we apply divergence theorem in 2D to get 

( )( ) ( )( ) 0
e

o i o i n

lS

v v dxdy v v dl   −  =  −   = A M N A M N a

 

In 2D approximation, dv becomes dxdy and dS becomes 𝐚𝑛𝑑𝑙. We have seen this earlier. The 

whole vector in the integral on the left hand side is going to be the vector in the integral on the 

right hand side multiplied with the normal vector to that surface.  

In two dimensional formulation the normal to the surface becomes 𝐚𝑛𝑑𝑙. Here, 𝑑𝑙 represents the 

contour. So, the vector in the integral in the right hand side of the above equation is multiplied 

with the normal vector and that will result in normal component to the surface. If there is a 

homogenous Neumann condition then this integral will become 0. If it is not then this integral will 

result into an additional term in the final FEM matrix equation. This term does not exist always. If 

it is homogeneous Neumann condition then the derivative of the field in the normal direction will 



be 0.  If there is no homogeneous condition then this integral will not be 0 and there will be an 

additional term in our final matrix equation.  
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Remember, this formulation is at the element level and when we integrate the effect for all the 

elements the internal contributions over the common edges will get cancelled because for any 

common edge the 𝐚𝑛 vectors will be opposite. The integral will contribute only to the outside 

boundary. This will be done when we assemble all the elements. So, that is why when we say 

homogeneous Neumann condition the above integral will contribute only to the outermost 

boundary because for the inter element segments the normal vectors are opposite and those 

contributions will get cancelled. We have seen the same theory earlier. The above integral is 

applicable only for the outermost boundary.  
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So, the above integral goes to 0 if there is a homogeneous Neumann condition on the outermost 

boundary. So, now we are left with the following term.   

∬(𝑣∇ × 𝐀 − 𝜈𝜇𝑜𝐌) ⋅ (∇ × 𝐍𝑖)𝑑𝑥𝑑𝑦

𝑆𝑒
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The modified weighted residual statement is given below. 



∬(𝑣∇ × 𝐀 − 𝑣𝜇𝑜𝐌) ⋅ (𝛻 × 𝐍𝑖)𝑑𝑥𝑑𝑦

𝑆𝑒

− ∬ 𝐉 ⋅ 𝐍𝑖𝑑𝑥𝑑𝑦

𝑆𝑒

= 0 

Now, the first integral in the above equation is split into two terms as given in the following 

equation.   

∬ 𝑣(∇ × 𝐀) ⋅ (∇ × 𝐍𝑖)𝑑𝑥𝑑𝑦

𝑆𝑒

− ∬(𝑣𝜇𝑜𝐌)

𝑆𝑒

⋅ (∇ × 𝐍𝑖)𝑑𝑥𝑑𝑦 − ∬ 𝐉 ⋅ 𝐍𝑖𝑑𝑥𝑑𝑦

𝑆𝑒

= 0 

With two dimensional formulation and A being only in z direction, (∇ × 𝐀) will be reduced as 

given below.  

∇ × 𝐀 = ||

𝐚̂𝑥 𝐚̂𝑦 𝐚̂𝑧
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧
0 0 𝐴𝑧

|| =
𝜕𝐴𝑧

𝜕𝑦
𝐚̂𝑥 −

𝜕𝐴𝑧

𝜕𝑥
𝐚̂𝑦 

Similarly, with 𝐍𝑖 being in z direction, we can write ∇ × 𝐍𝑖 as given below.  

∇ × 𝐍𝑖 = ||

𝐚̂𝑥 𝐚̂𝑦 𝐚̂𝑧
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧
0 0 𝑁𝑖

|| =
𝜕𝑁𝑖

𝜕𝑦
𝐚̂𝑥 −

𝜕𝑁𝑖

𝜕𝑥
𝐚̂𝑦 

If A is in z direction then 𝐍𝑖 also will be in z direction because magnetic vector potential for any 

element can be written as 

𝐀 = 𝐍1𝐴1 + 𝐍2𝐴2 + 𝐍3𝐴3 

So, from the above equation, we can say that the direction to A will be given by the direction of 

N’s and 𝐴1, 𝐴2, and 𝐴3 are just scalars at the three nodes. 
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For 𝐀 = 𝐍1𝐴1 + 𝐍2𝐴2 + 𝐍3𝐴3,  A on the left hand side is a vector so on the right-hand side also 

there has to be a vector, but 𝐴1, 𝐴2, and 𝐴3 are just the scalar magnitudes. So, here A being a vector 

should get reflected by 𝐍1, 𝐍2, and 𝐍3 being vectors.  

If A has only z component then 𝐍1, 𝐍2, and 𝐍3 also will have z component only. So, that is why 

𝐍𝑖 is 𝑁𝑖𝑧. But we have dropped the subscripts z in the above determinant for simplicity. The 

expressions of ∇ × 𝐀 and ∇ × 𝐍𝑖 are similar.  Now, we require (∇ × 𝐀) ∙ (∇ × 𝐍𝒊).  It can be 

written as given below.  

∫(∇ × 𝐀) ∙ (∇ × 𝐍)

 

𝑆𝑒

𝑑𝑆 = ∬ (
𝜕𝐴𝑧

𝜕𝑦
𝐚̂𝑥 −

𝜕𝐴𝑧

𝜕𝑥
𝐚̂𝑦) ∙ (

𝜕𝑁𝑖

𝜕𝑦
𝐚̂𝑥 −

𝜕𝑁𝑖

𝜕𝑥
𝐚̂𝑦) 𝑑𝑥𝑑𝑦

= ∬
𝜕𝐴𝑧

𝜕𝑥

𝜕𝑁𝑖

𝜕𝑥
+

𝜕𝐴𝑧

𝜕𝑦

𝜕𝑁𝑖

𝜕𝑦
𝑑𝑥𝑑𝑦 

So, in the above equation we just have a dot product.  Then A is getting replaced with 𝐀 = 𝐍1𝐴1 +

𝐍2𝐴2 + 𝐍3𝐴3. Then 𝐴1, 𝐴2, and 𝐴3 will come out of the integral as given in the following equation 

∫(∇ × 𝐀) ∙ (∇ × 𝐍)

 

𝑆𝑒

𝑑𝑆
 

⇒ ∑ 𝐴𝑗 ∬
𝜕𝑁𝑖

𝜕𝑥

𝜕𝑁𝑗

𝜕𝑥
+

𝜕𝑁𝑖

𝜕𝑦

𝜕𝑁𝑗

𝜕𝑦
𝑑𝑥𝑑𝑦

3

𝑗=1

 

Then, we will get this as just a product of the two terms as shown in the above equation.  
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The function 𝑁𝑖 is our standard shape function. As we discussed earlier the shape function was in 

z direction because A was in z direction. So, 𝑁𝑖 was in z and it was a function of x and y.  

(Refer Slide Time: 11:07) 

  

But here we are developing vector formulation because M will have two components (x and y 

components) as we see later. 
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Generally, the magnetization vector of a permanent magnet is in xy plane along the line joining 

north and south poles. So, M vector can have in general x and y components depending upon the 

orientation of the permanent magnet. Suppose the permanent magnet is vertical, it will have only 

y component. If it is at an angle with respect to x or y axis then it will have both x and y components.  
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In the previous 2D formulations, each vector in the governing PDE, current density and A were in 

z direction and there was no other vector in any other direction. So, we were always solving in 



terms of A using a scalar formulation. Now, we are in a position to write the contribution from the 

permanent magnet as given below 

∬(𝑣𝜇𝑜𝐌)

𝑆𝑒

⋅ (∇ × 𝐍𝑖)𝑑𝑥𝑑𝑦 

So, the M vector in the above integral have x and y components.  
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By substituting the expression of ∇ × 𝐍𝑖 and then simplifying the dot product in the above integral 

we get,  

∬(𝑣𝜇𝑜𝐌)

𝑆𝑒

⋅ (∇ × 𝐍𝑖)𝑑𝑥𝑑𝑦 = 𝑣𝜇𝑜 ∬(𝑀𝑥𝐚𝑥 + 𝑀𝑦𝐚𝑦) ⋅ (
𝜕𝑁𝑖

𝜕𝑦
𝐚𝑥 −

𝜕𝑁𝑖

𝜕𝑥
𝐚𝑦)

𝑆𝑒

𝑑𝑥𝑑𝑦

= 𝑣𝜇𝑜 ∬ (𝑀𝑥

𝜕𝑁𝑖

𝜕𝑦
− 𝑀𝑦

𝜕𝑁𝑖

𝜕𝑥
)

𝑆𝑒

𝑑𝑥𝑑𝑦 

Now, by taking the derivatives of the shape function 𝑁𝑖 we get 

∬(𝑣𝜇𝑜𝐌)

𝑆𝑒

⋅ (∇ × 𝐍𝑖)𝑑𝑥𝑑𝑦 = 𝑣𝜇𝑜 ∬ (𝑀𝑥

𝑄𝑖

2Δ
− 𝑀𝑦

𝑃𝑖

2Δ
)

𝑆𝑒

𝑑𝑥𝑑𝑦 



So, standard derivative of 𝑁𝑖 with respect to y will result only in 𝑄𝑖 and derivative with respect to 

x will result in 𝑃𝑖 only . 

Now, remember that the above integral will be for one node. Similarly, we will get two equations 

for the other two nodes. So, we will get three equations.  

Suppose if the above equation is for an ith node then we will get additional two such statements 

for the other two nodes. That is the reason our final matrix equation at the element level source 

matrix due to permanent magnet will be as given below 

𝑣𝜇0

2
[𝑀𝑥 [

𝑄1

𝑄2

𝑄3

] − 𝑀𝑦 [
𝑃1

𝑃2

𝑃3

]] 
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∫(𝛻 × 𝐀) ∙ (𝛻 × 𝐍)

 

𝑆𝑒

𝑑𝑆
 

⇒ ∑ 𝐴𝑗 ∬
𝜕𝑁𝑖

𝜕𝑥

𝜕𝑁𝑗

𝜕𝑥
+

𝜕𝑁𝑖

𝜕𝑦

𝜕𝑁𝑗

𝜕𝑦
𝑑𝑥𝑑𝑦

3

𝑗=1

 

Now, the above integral will give the 3 × 3 element coefficient matrix (𝐶 matrix) as we have seen 

in the previous lecture.  
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[𝐶𝑒][𝐴𝑒] = [𝐵𝑒] +
𝑣𝜇0

2
[𝑀𝑥 [

𝑄1

𝑄2

𝑄3

] − 𝑀𝑦 [
𝑃1

𝑃2

𝑃3

]] 

The [𝐵𝑒] matrix in the above equation is our standard matrix which will come from a current 

source condition. That means if there is J in the problem domain then the entries of [𝐵𝑒] matrix 

will be 𝐽∆/3. When we combine all the element coefficient matrices then at the end if there is a 

non homogeneous condition, it will lead to a boundary condition matrix which will come on 

account of the following integral 

∮((𝑣𝛻 × 𝑨 − 𝑣𝜇𝑜𝑴) × 𝑵𝑖) ⋅ 𝒂𝑛𝑑𝑙

𝑙

 

If there is an outer most boundary with 𝐴 = 0 or some Dirichlet condition then that has to be 

imposed in the final global system of equations. 
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So, in the above FEM equation, the source matrix due to permanent magnet is the new term. The 

complete derivation that we have witnessed corresponds to this term. In this formulation there are 

𝑀𝑥 and 𝑀𝑦 due to the magnetization vector of the permanent magnet. If there is no permanent 

magnet then 𝑀𝑥 = 𝑀𝑦 = 0 ant the this whole term becomes 0, and we will get the matrix equation 

that corresponds to Poisson’s equation without permanent magnet.  
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Now, we will quickly see change required in the standard Scilab code. The change will only 

correspond to the following term and the rest will remain the same. 

𝑣𝜇0

2
[𝑀𝑥 [

𝑄1

𝑄2

𝑄3

] − 𝑀𝑦 [
𝑃1

𝑃2

𝑃3

]] 

So, wherever there is a permanent magnet in the problem domain we have to form the above 

element level matrix using the code given in the above slide. The value of the magnetization vector 

is assigned using the following part of the code. 

 

Here we are considering that the sub domain number of permanent magnet is 5. Remember that 

the first entry of a column of the t matrix is the sub domain number. We assume that the permanent 

magnet is in y direction and M will have y component only. So, we are defining the value of My 

as 1.14 × 106.  



Now, this value of My is quite high as compared to non magnetic materials because we are 

modelling a permanent magnet. Remember for a ferromagnetic material also My will be high.This 

𝑀𝑦 is actually residual magnetization.  

Going further the following part of the code that correspond to element level coefficient matrix is 

exactly identical to the code that we have seen in the previous lectures.  

 

Now, the additional term that corresponds to the permanent magnet is coded as given below.  

 

Here, 𝑀𝑥 = 0 because the magnet is oriented in the vertical direction. We are assuming that 𝜇𝑟 for 

the permanent magnet is equal to 1. That is why reluctivity 𝜈 is 1/𝜇0. But assuming 𝜇𝑟 = 1 means 

that 𝜒𝑚 = 0. Then 𝜈 = 1/𝜇0 and 𝜈𝜇0 = 1. So, that is why only –0.5 remains in the above code. 

Rest of the code remains the same. 
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