Electrical Equipment and Machines:
Finite Element Analysis
Professor Shrikrishna V. Kulkarni
Department of Electrical Engineering
Indian Institute of Technology, Bombay
Lecture No 32
Permanent Magnets: FEM Implementation

Welcome to lecture 32. In this lecture, we will derive the FEM formulation for permanent magnets.
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We start with the following governing equation which we have seen in the previous lecture.

VXWxA=J+Vx(uvM,)

In the above equation, J is due to free current and V x (u,vM,.) is representing the source due to
a permanent magnet. Now, in the above equation subscript r will be dropped. So, we should always
remember that M in the equations given in the above slide is actually My and subscript r is dropped

for simplicity.

So, now we will apply the weighted residual method to the above PDE. In weighted residual
method, we integrate the weight into residue over the domain and equate it to 0. The residue will
be there because we have substituted the approximate solution function and we minimize the

residue in the weighted integral sense.



Now, as compared to the weighted residual approach that we saw in the previous lecture there is
one difference here. In the previous lecture, it was a purely scalar formulation because it was two-
dimensional formulation with all the vectors in z direction. Since, all the vectors in the governing

equation are in z direction, so the direction was fixed and only magnitude had to be determined.
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Mis ayector in the xy plane and the direction of Aand J (if it exists) will be in z direction

But here, M is a vector in Xy plane and its direction is not along z direction, so we have to develop
the formulation in vector notation. So, that is why the weighting function is also a vector because
residue is a vector. So, now, we are considering Galerkin’s approach and we took the weighting

function as shape function and the only difference is both functions are vectors.

So, we are using the following vector identity

(VxB)-C=V-(BxC)+B:(VxC)
B=vwWxA-vuM
C=N,

Using this vector identity the first term of the weighted residual statement can be modified as given

below.
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W = N; (Galerkin method)
”Vx(viA—Vyol\/l)- N; dxdy =
px
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For the second term in the above equation we apply divergence theorem in 2D to get

[[V-((vwx A=vu,M)x N, )dxdy = p((WW x A=vg,M)x N, )-a,dl =0

s¢ |
In 2D approximation, dv becomes dxdy and dS becomes a, dl. We have seen this earlier. The
whole vector in the integral on the left hand side is going to be the vector in the integral on the

right hand side multiplied with the normal vector to that surface.

In two dimensional formulation the normal to the surface becomes a,,dl. Here, dl represents the
contour. So, the vector in the integral in the right hand side of the above equation is multiplied
with the normal vector and that will result in normal component to the surface. If there is a
homogenous Neumann condition then this integral will become 0. If it is not then this integral will
result into an additional term in the final FEM matrix equation. This term does not exist always. If

it is homogeneous Neumann condition then the derivative of the field in the normal direction will



be 0. If there is no homogeneous condition then this integral will not be 0 and there will be an

additional term in our final matrix equation.
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Remember, this formulation is at the element level and when we integrate the effect for all the
elements the internal contributions over the common edges will get cancelled because for any
common edge the a,, vectors will be opposite. The integral will contribute only to the outside
boundary. This will be done when we assemble all the elements. So, that is why when we say
homogeneous Neumann condition the above integral will contribute only to the outermost
boundary because for the inter element segments the normal vectors are opposite and those
contributions will get cancelled. We have seen the same theory earlier. The above integral is

applicable only for the outermost boundary.
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So, the above integral goes to O if there is a homogeneous Neumann condition on the outermost

boundary. So, now we are left with the following term.
ff(vv X A —vu,M) - (VX N;)dxdy
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The modified weighted residual statement is given below.



J.f(vV XA —vu,M) - (V x N;)dxdy — ff J-N;dxdy =0
se se

Now, the first integral in the above equation is split into two terms as given in the following

equation.

Sﬂ v(V x A) - (V x N)dxdy — Sfef(vqu) (VX Npdxdy — Sff J-Nydxdy = 0

With two dimensional formulation and A being only in z direction, (V x A) will be reduced as

given below.
jax ay az
VxA o ad 0 0A, 04, _
=|l— — —|=—7—a,———a
ox dy 9dz| ady * ox 7
0 0 A,

Similarly, with N; being in z direction, we can write V X N; as given below.

ax ay az

a ad 0 ON; = ON; _

dx dy dz| dy

0 0 N;

If Ais in z direction then N; also will be in z direction because magnetic vector potential for any

element can be written as
A == N1A1 + N2A2 + N3A3

So, from the above equation, we can say that the direction to A will be given by the direction of

N’sand A4,, A,, and A5 are just scalars at the three nodes.
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For A = N;A; + N,A, + N3A;, A on the left hand side is a vector so on the right-hand side also
there has to be a vector, but A,, A,, and A5 are just the scalar magnitudes. So, here A being a vector

should get reflected by N,, N, and N5 being vectors.

If A has only z component then N4, N,, and N5 also will have z component only. So, that is why
N; is N;,. But we have dropped the subscripts z in the above determinant for simplicity. The
expressions of Vx A and V x N; are similar. Now, we require (VX A) - (V X N;). It can be

written as given below.

04, 04, ON; . ON; _
j(VXA)'(VXN) as = Jj (Eax—aay)(ﬁax—aay)dxdy
Se

dA,0N; 0A,0dN;
= ﬂ + dxdy

dx dx  dy 0dy

So, in the above equation we just have a dot product. Then A is getting replaced with A = N;4; +

N,A, + N;A;. Then A4, A,, and A5 will come out of the integral as given in the following equation

j(VXA) (V x N) dS Z ﬂaNaN ON; ON; \ a
=z dx dx 0dy dy xay

Then, we will get this as just a product of the two terms as shown in the above equation.
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The function N; is our standard shape function. As we discussed earlier the shape function was in

z direction because A was in z direction. So, N; was in z and it was a function of x and y.
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In 2-D problems earlier, without permanent magnets, all terms in the governing equations were
in the same direction resulting in scalar representation. But in this case the M vector in the

governing equation is in x-y plane, which therefore has direction different than that of the A vector

But here we are developing vector formulation because M will have two components (x and y

components) as we see later.
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Generally, the magnetization vector of a permanent magnet is in xy plane along the line joining
north and south poles. So, M vector can have in general x and y components depending upon the
orientation of the permanent magnet. Suppose the permanent magnet is vertical, it will have only
y component. If it is at an angle with respect to x or y axis then it will have both x and y components.
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In the previous 2D formulations, each vector in the governing PDE, current density and A were in

z direction and there was no other vector in any other direction. So, we were always solving in



terms of A using a scalar formulation. Now, we are in a position to write the contribution from the

permanent magnet as given below

Sf j (WioM) - (¥ x Ny)dxdy

So, the M vector in the above integral have x and y components.
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By substituting the expression of V x N; and then simplifying the dot product in the above integral

we get,

N, N,
jf (vu,M) - (V x N))dxdy = v,uoj (Mya, + Mya,) - (E a, — an> dxdy
Se e

aN

Now, by taking the derivatives of the shape function N; we get

ﬂ(vyoM) (VX N;)dxdy = vu, ﬂ x ZA M, 2PA> dxdy



So, standard derivative of N; with respect to y will result only in Q; and derivative with respect to

x will result in P; only .

Now, remember that the above integral will be for one node. Similarly, we will get two equations

for the other two nodes. So, we will get three equations.

Suppose if the above equation is for an ith node then we will get additional two such statements
for the other two nodes. That is the reason our final matrix equation at the element level source

matrix due to permanent magnet will be as given below

Ql Pl
Vi
TO M, (Qz| — M, | P>
Q3 P3
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j(v A) - (V xN)dS ZA ﬂaNaN N O
% =z dx dx  dy 0dy xaey

Now, the above integral will give the 3 x 3 element coefficient matrix (C matrix) as we have seen

in the previous lecture.
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Py

[C°1[A°] = [B®] + —= | My [Q2| — M, P2

2 Qs

The [B€] matrix in the above equation is our standard matrix which will come from a current
source condition. That means if there is J in the problem domain then the entries of [B¢] matrix
will be JA/3. When we combine all the element coefficient matrices then at the end if there is a

non homogeneous condition, it will lead to a boundary condition matrix which will come on

account of the following integral

f((vv X A —vu,M) x N;) - a,dl
l

If there is an outer most boundary with A = 0 or some Dirichlet condition then that has to be

imposed in the final global system of equations.

Py

~ NS N
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So, in the above FEM equation, the source matrix due to permanent magnet is the new term. The
complete derivation that we have witnessed corresponds to this term. In this formulation there are

M, and M, due to the magnetization vector of the permanent magnet. If there is no permanent
magnet then M,, = M,, = 0 ant the this whole term becomes 0, and we will get the matrix equation

that corresponds to Poisson’s equation without permanent magnet.
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Now, we will quickly see change required in the standard Scilab code. The change will only

correspond to the following term and the rest will remain the same.

Ql Pl
vu
TO M, |Q2| — M, |P,
Q3 P;

So, wherever there is a permanent magnet in the problem domain we have to form the above
element level matrix using the code given in the above slide. The value of the magnetization vector
is assigned using the following part of the code.
fori=1:n_elements
if (t(1,i) == 5) then
My(i,1) = 1.14%(1e6);

end
end

Here we are considering that the sub domain number of permanent magnet is 5. Remember that
the first entry of a column of the t matrix is the sub domain number. We assume that the permanent

magnet is in y direction and M will have y component only. So, we are defining the value of My

as 1.14 x 10°.



Now, this value of My is quite high as compared to non magnetic materials because we are
modelling a permanent magnet. Remember for a ferromagnetic material also My will be high.This

M, is actually residual magnetization.

Going further the following part of the code that correspond to element level coefficient matrix is
exactly identical to the code that we have seen in the previous lectures.
fori=1:3
for j=1:3
c(element,i,j)=((P{i}*P(j))+(Q(i)*Qlj)))/(4*delta*Mu(element));

end
end

Now, the additional term that corresponds to the permanent magnet is coded as given below.
b(element,:) = -0.5*My(element)*[P(1) P(2) P(3)];

Here, M,, = 0 because the magnet is oriented in the vertical direction. We are assuming that u,. for
the permanent magnet is equal to 1. That is why reluctivity v is 1/u,. But assuming u,, = 1 means
that y,, = 0. Then v = 1/u, and vy, = 1. So, that is why only —0.5 remains in the above code.

Rest of the code remains the same.

(Refer Slide Time: 19:55)

xaxis and if itis discretised into n elements, then write the expression_ .,
of the elemental source matrix that corresponds to its permanent /4, ©

L32: Review Question

Q: For a permanent magnet, with remanence magnetization M, , as

shown in the figure, if its axis (a-a') is oriented at an angle of 30° with @
=y

)
CDEEP

magnet nature. Calculate the value of M, if B, = 1.3 T. , I Bombay
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