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Lecture 30: Torque Speed Characteristics of an Induction Motor and FE Analysis of 

Axisymmetric Problem 

Welcome to the 30th  lecture, we will see computation of torque speed characteristic of an induction 

motor using time harmonic formulation that we saw in the last two lectures.  
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The governing partial differential equation for this problem is given below.  

1

𝜇
𝛁2𝐀 − 𝑗(𝑠𝜔)𝜎𝐀 = − J0 

This equation is familiar to us, the only change here is there is an 𝑠 term with 𝑗𝜔. Here, 𝑠 is the 

slip of the induction motor. Because depending upon the frequency of induced emf, we have to 

take 𝑠𝜔 as slip frequency. Suppose, if it is rotor then we have to take the corresponding slip. If it 

is stator, then the value of slip 𝑠 will be equal to 1. Depending upon the section of the motor we 

have to choose the value of 𝑠. So, the above equation is generalized.  The other two terms remain 

the the same. We know from the induction motor theory, if we know the value of rotor losses (𝑃𝑟) 

then torque is calculated by using the following equation. 



 

Here, in the geometry of induction motor the rotor structure is made of solid iron because the value 

of slip is very small and so the frequency of induced voltage and the value of eddy current losses 

will be quite small. So we can consider this rotor as solid and it is not laminated. Whereas the 

stator structure and the outer most part of the stator is laminated steel. But in the stator part we are 

not interested in the loss calculation. So, we will not be defining conductivity for the stator. There 

are 2 more simplifications in the model shown in the above slide, they are the stator part does not 

have teeth and there are only coils which are indicated as A+, A–, B+, B–,  C+, and C–.  

The outer path indicated as stator steel is just path for the containment of flux. So, the gap between 

stator and rotor is air gap. The rotor is in the form of an aluminum ring as indicated in the figure. 

So instead of having squirrel cage induction motor in which the cage having aluminum bars which 

are short circuited at both ends, in this model we are simplifying the rotor as a simple circular 

aluminum ring. The source for this geometry is https://www.compumag.org/wp/team/ which have 

Team Workshop problems. These are standard benchmark problems. Whenever we develop a 

complex FEM based analysis we have an option to verify our formulation by solving some 

standard benchmark problems given in this website.  
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For example, in this website (or slide), there are a number of benchmark problems.  We can just 

open any of those problems (pdf files) in which some theory, problem definition , and results are 

given. So, we can model any of these problems which are of interest to us and verify our FEM 

formulation. This a very useful website with a number of problems like, static, time harmonic, 

transient, coupled circuit field problems, etc.  

We have taken this geometry from the above website and the problem is 30a. Of course, the 

geometry is a simplified one.  

 

So, the above geometry is a 3 phase two pole induction motor. Here, we are actually going to 

define peak current for A phase. So A+ is peak current, B+ and C+ coils will have negative half 

peak current. So that means, B– and C– will have positive half peak currents.  

The positive currents in A+, B–, and C–  together will create flux contours that enclose the three 

coils. Of course, the currents in these coils are displaced in time. Similarly here, A– will have 

negative peak current, C+ and B+ will carry negative half peaks. There will be another set of flux 

contours which will be enclosing the 3 coils carrying negative current. Let us study the flux plot 

shown in the following figure that we have obtained by solving the time harmonic problem.  

 



The flux contours in red colour are enclosing the coils that carry positive current and the another 

set of contours in blue colour encloses the coils carrying negative current. After understanding the 

geometry and ampere turn definition, we will solve the PDE that we saw in the previous slide by 

discretizing the geometry and following the FE procedure. In the PDE, 
1

𝜇
𝛁2𝐀  term will give the 

global coefficient matrix having geometry and material information, 𝑗(𝑠𝜔)𝜎𝐀 will give the D 

matrix that we saw in the previous lecture and − J0 will give the BJ matrix.  

 We already saw the expression for torque which is given by rotor losses divided by 𝑠𝜔.  Here, 𝜔 

is synchronous speed in radians per second. So, slip 𝑠 is  given by the following equation. 

𝑠 =
𝜔 − 𝜔𝑟

𝜔
 

Here, 𝜔 is synchronous speed and 𝜔𝑟 is the rotor speed. Here, we are taking frequency as 60 Hz, 

because the frequency defined in problem 30a is 60 Hz. So, now having got the solution A 

(magnetic vector potential) we can then find out the induced electric field intensity which is given 

by the following expression 

𝐸 = −
𝜕𝐴

𝜕𝑡
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That means 𝐸 = −𝑗𝜔𝐴 in frequency domain. Then, we can find out the amplitude of E, and 

substitute it in the following equation to calculate eddy current losses in the rotor.  

𝑃𝑟 = ∫ 𝜎|𝐸|2𝑑𝑥𝑑𝑦𝑑𝑧

𝑣

 

Here, 𝜎 is the conductivity. We can calculate the loss in terms of J by using the following 

expression.  

𝑃𝑟 = ∫ 𝜌|𝐽|2𝑑𝑥𝑑𝑦𝑑𝑧

𝑣

 

Here 𝜌 is the resistivity. Because 𝐸 =
𝐽

𝜎
.  

In some commercial softwares, they will code loss either in terms of 𝜎|𝐸|2𝑑𝑣 or 𝜌|𝐽|2𝑑𝑣 . As 

mentioned previously, the units of both these terms are W/m3. The dimensions of the induction 

motor geometry are also given in the above slide. So, remember this is a very simplified geometry 

just for the verification purpose.  

Earlier, we have discussed the geometry independent nature of the finite element methods as an 

advantage. So, if our finite element formulation works for a problem with trivial or simplified 

geometry, then it will definitely work for complicated geometry or real geometry of a motor with 

all the details considered.  



 

So, we have already seen the flux plot on the right hand side of the above slide. Now this plot is 

for a slip of 0.05 which is a practical slip value.  
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The slip of 0.47 is not practical. Because if we see the torque speed characteristics given in the 

above slide, the operating region or the stable region is in the linear region. The non linear region 

between 0 to 300 rad/s is unstable. So, 𝑠 = 0.5 will come somewhere in the unstable region. But 

just for comparison purpose, we have plotted the flux for 𝑠 = 0.5 which corresponds to the speed 

of 200 rad/s  for 60 Hz case.  



Because problem 30a has the corresponding value of torque using which we can verify. So, then 

we get the following values of losses in aluminium and rotor steel for the two cases.  

 

These losses can be calculated using the formula that we have seen in slide 1. Practically slip = 

0.47 is not possible. In the following figure we can see that as the value of slip is high, the induced 

eddy currents and the corresponding distortion will be high.  

 

The flux pattern shown in the above figure is considerably distorted as compared to the flux plot 

for s = 0.05.  

Our objective is to plot torque speed characteristics. For that we have to vary slip in the FEM 

formulation. For every slip, we solve the governing PDE and we can eventually calculate the value 

of 𝑃𝑟 using which we can calculate the torque. Then we can plot the characteristics given in the 

following figure.   



 

The x axis of the above figure is nothing but slip which is calculated using the following equation.  

𝑠 =
𝜔 − 𝜔𝑟

𝜔
 

So, for every slip or rotor speed, we can get one torque value, and that is how we can plot the 

torque speed characteristics. For this as many FEM simulations are required as many points we 

want to plot on the torque speed characteristics.  

This procedure is fairly easy, because this is a static formulation and it is not a transient case. Once 

we develop our working code, we have to set up an outer do loop with s varying form 0 to 1. Using 

this, we can get all the torque values in one go. So, this procedure is fairly straightforward. Here 

the following calculation corresponds to the synchronous speed.  

𝜔 = 2𝜋
2𝑓

𝑃
 (

rad

s
) =

4𝜋𝑓

𝑃
=

4𝜋60

2
= 377

𝑟𝑎𝑑

𝑠
 

If rotor speed is equal to synchronous speed then the value of s = 0. If 𝜔 (=
120𝑓

𝑃
) is divided by 60 

we get the speed in revolutions per second (rps). So the speed in rps is 
2𝑓

𝑃
. So, if we want to find 

the speed in radians per second then we have to multiply the speed in rps with 2𝜋 because one 

revolution has 2𝜋 radians. So, the speed in radians per second is 
4𝜋𝑓

𝑃
. So, f = 60 Hz, the value of 

speed is 377 radians per second. So, this is how we use FE methodology to plot torque speed 

characteristics of an induction motor.  
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We go to the next topic, axisymmetric problem which are quite often encountered in our electrical 

engineering when we deal with coils which are mostly circular. If we can simplify some 

geometrical details and make it symmetrical about axis then the axisymmetric formulation is good 

because by doing a 2D simulation we are effectively getting 3D fields since the fields are 

independent in phi direction. 

So that is why axisymmetric formulation can be quite handy in the analysis of electrical machines 

and equipments. Now in this formulation, we are assuming symmetry about the z axis, which is 

quite logical. Let us see some theory. We know that 𝐁 = ∇ × 𝐀. In this case J (current density) is 

in phi direction. If the axis is in z direction then the current will be in 𝜙 direction. So, J also will 

be in 𝜙 direction.   

If current density is in 𝜙 direction, then A also will be in 𝜙 direction as we have seen in the basics 

of electromagnetics. So that is why 𝐁 = ∇ × 𝐀 can be expanded as given below 

 



The determinant in the above derivation is the basic definition of curl in cylindrical coordinate 

system. If we expand the determinant, we will get the two components of B that are given in the 

above equation, which is obvious because J in 𝜙 direction will lead to B with two components in 

𝜌 and z directions. In earlier case in the Cartesian system we used to take J in z direction and then 

B will have x and y components. Similarly, if J is in 𝜙 direction then B will have 𝜌 and z 

components. Now, 𝜌 from 
1

𝜌

𝜕(𝜌𝐴𝜙)

𝜕𝑧
  can be taken out because 𝜌 is constant when we are taking 

derivative with respect to z.  We  can calculate J using 𝐉 = ∇ × 𝐇.  Also, H is 
𝐵

𝜇
. So, then we can 

expand the curl expression as given below.  

 

 By substituting the two components of B, the above equation can be written as 

−
𝜕

𝜕𝜌
(

1

𝜌𝜇

𝜕(𝜌𝐴𝜙)

𝜕𝜌
) −

𝜕

𝜕𝑧
(

1

𝜇

𝜕𝐴𝜙

𝜕𝑧
) = J𝜙 

Here J will be in only 𝜙 direction and that can be verified using the above equation.   
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Going further, if we have to use the same formulation that we developed for Cartesian systems  

then we have to make the above equation  as symmetrical. Then we can apply the same formulation 

that we developed in xy system for this 𝜌z system. For that, we have to multiply the numerator and 

denominator of 
1

𝜇

𝜕𝐴𝜙

𝜕𝑧
 by 𝜌. Because 𝜌 is constant and it can be taken inside 

𝜕

𝜕𝑧
. After this 

modification the equation will become symmetrical as given below. 

−
𝜕

𝜕𝜌
(

1

𝜌𝜇

𝜕(𝜌𝐴𝜙)

𝜕𝜌
) −

𝜕

𝜕𝑧
(

1

𝜌𝜇

𝜕(𝜌𝐴𝜙)

𝜕𝑧
) = 𝐽𝜙 

Here, we have to replace 𝜌 with x and z with y to compare with respect to our formulation in 

Cartesian system. Suppose in xy system, the horizontal axis is x and the vertical axis is y. In 

cylindrical system, the horizontal axis is 𝜌 and vertical axis is z. So, x is nothing but 𝜌 and y is 

nothing but z. So that is why, 𝜌 is replacing x, z is replacing y and 𝜌𝐴 is replacing Az.   

In two dimensional approximation in xy system we always took current in the z direction, so A 

was in the z direction. AZ is now replaced by 𝜌𝐴𝜙. Now, with this manipulation we can use the 

code developed for the Cartesian system for the axisymmetric case with no change.  The only thing 

that we have to remember is the solution that we get is not 𝐴𝜙but it is 𝜌𝐴𝜙. Then if we want to 

find the magnitude of A at any point then we have to divide the solution value by 𝜌 at that point.  

After having solution, suppose if we want to find the value of 𝐴𝜙 at a point then we have to divide 

the solution by  the corresponding 𝜌 at that point. So that 
𝜌𝐴𝜙

𝜌
 will give 𝐴𝜙 at that point. Considering 

𝜌 as constant for the element is another approximation we do for simplifying our calculation. That 

means suppose we have a triangular element as shown in the following figure then the value of 𝜌 

is changing at every point within the element.  

 

But if the element is fairly small, we can assume that 𝜌 is constant for every element and we can 

consider its value as equal to the value at centroid of the element. Then if we do all these 



simplifications and manipulations as explained earlier then the formula for entries of element 

coefficient matrix will remain the same as given below. 

 

In this formula the only change is in the denominator, we use one 𝜌 at the element in which 

calculations are being made. Since we are assuming 𝜌 for the element as constant we can just write 

here one 𝜌 value in the above expression. Earlier in the Cartesian system, we had only 𝜇 in the 

denominator. Now here in this formulation, we have 𝜌𝜇 in the denominator.  

In the above expression, we have 𝜇 as a function of B, this is not valid yet because we have not 

formulated any non-linearity. Just consider this 𝜇(𝐵) as just 𝜇.  

𝜇 has to be considered as a function of B when we actually formulate non-linearity which we will 

see in a later lecture. So now, we consider this as 𝜇 which is constant over each element if the 

properties of all materials as linear. Source matrix remains the same which we have calculated 

earlier, that means 𝐽𝜙 in the PDE will result into 
𝐽∆

3
.  
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Now, we will see how to calculate B from A. In this formulation, the approximation of unknown 

potential function is given below 



 

Here, the expressions for 𝑁1, 𝑁2, and 𝑁3 are functions of  𝜌 and z as given in the above equation 

with x and y replaced by 𝜌 and z. Now in one of the previous slides we have already calculated the 

following expression of B.  

𝑩 = −
𝜕𝐴𝜙

𝜕𝑧
𝐚𝜌 +

1

𝜌

𝜕(𝜌𝐴𝜙)

𝜕𝜌
𝐚𝑧 = −

1

𝜌

𝜕(𝜌𝐴𝑒)

𝜕𝑧
𝐚𝜌 +

1

𝜌

𝜕(𝜌𝐴𝑒)

𝜕𝜌
𝐚𝑧 

Then we take the derivatives of 𝜌𝐴𝜙  with respect to z and 𝜌. This leads to the following expression. 

𝐁 =
1

𝜌

1

2Δ
{−(𝐴1

𝑒𝑄1 + 𝐴2
𝑒𝑄2 + 𝐴3

𝑒𝑄3)�̂�𝝆 + (𝐴1
𝑒𝑃1 + 𝐴2

𝑒𝑃2 + 𝐴3
𝑒𝑃3)�̂�𝑧} 

This expression is similar to the one that we have seen in the Cartesian system except that we have 

1

𝜌
 which is logical. The terms 𝑄1, 𝑄2, and 𝑄3 and 𝑃1, 𝑃2, and 𝑃3 are the standard ones as earlier 

which are in terms of 𝜌 and z co-ordinates.  
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After calculating the value of B we have to evaluate the values of energy and inductance, which is 

straightforward. In the Cartesian system, we had multiplied the energy density term 
𝐵2

2𝜇
 with the 

differential volume 𝑑𝑥𝑑𝑦𝑑𝑧.  But here we are taking per meter depth that is why 1 appears in the 

following equation.  

𝐸 = 1 ∫
𝐵2

2𝜇
𝑑𝑥𝑑𝑦

𝑆

 

The above expression represents the total energy. In cylindrical system, the total energy can be 

written as  

𝐸 = 2𝜋𝜌 ∫
𝐵2

2𝜇
𝑑𝜌𝑑𝑧

𝑆
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In terms of code that corresponds to element coefficient matrix we should have 𝜇 accompanied 

with 𝜌 as given in the above slide. So this is the only change because of 𝜌 in the denominator. The 

source matrix remains the same as 
𝐽∆

3
.  
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Similarly in the code that corresponds to calculation of magnetic flux density we have 𝐵𝑧 and 𝐵𝜌 

instead of 𝐵𝑦 and 𝐵𝑥. We have already seen the expressions of 𝐵𝑧 and 𝐵𝜌 that are given in the 

above slide. Compared to the code for the Cartesian system, we have additional 𝜌 term (which is 

variable Cx in the above code) as indicated in the above slide. Then 𝐵𝑛𝑒𝑡 = √𝐵𝜌
2 + 𝐵𝑧

2. We have 

to calculate the energy for each element using the expression 2𝜋𝜌
𝐵2

2𝜇
∆. We have to integrate to 

calculate the energy for the whole domain.  
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In the above slide, we will analyze inductance of a gapped-core reactor which was discussed in 

L24 using axisymmetric FE formulation. As shown in the figure given in the above slide, there is 

a central core with non-magnetic gaps whose total length is designed to have a particular value of 

inductance. Most of the energy is stored in these gaps because of their high reluctance and hence 

the energy stored in these gaps predominantly decides the inductance value.  

Here, the central core and the coil are circular and they are symmetric about the axis. The top and 

bottom yokes and two side limbs are flat structures with rectangular cross section. Hence truly 

speaking, the entire geometry is not axisymmetric. Earlier we have analyzed the same problem in 

2D Cartesian system and the computation is done per meter depth in z direction. So, in that analysis 

it is essentially assumed that the entire geometry is infinite in extent in the z direction, which is 

also not true.  

Axisymmetric approximation is not bad if the coil and the core have large diameters. Thus we have 

to understand that both Cartesian and axisymmetric 2D approaches are approximate as 

summarized in the above slide. But these approximations are good enough for inductance 

calculation. For more accurate computation, one has to do 3D FEM analysis. The values of 

inductance calculated by using both methods are close to each other as given in the above slide.  



In the method based on Cartesian coordinates, we had calculated energies per meter depth in 

various parts and we have multiplied them with the corresponding mean diameters to obtain the 

total energy. In the axisymmetric approach, we multiplied the elemental energies by corresponding 

mean diameters at the element level using the FEM code. This is another difference between the 

two models. In the next lecture, we will see permanent magnets and corresponding FE formulation. 

Thank you.  
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