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Eddy Losses in Transformer Windings 

 

Welcome to 29th lecture, wherein we will see more about applications of non-homogenous 

Neumann conditions whose formulation is derived in lecture 28. In this lecture, we will 

see, how do we find out eddy current losses in windings of a power transformer by using 

FE analysis.  
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First let us see the application of non-homogeneous Neumann conditions.  Let us consider 

case of a conducting plate, which is excited on its both surfaces by same magnetic field 

intensity (H) as shown in the following figure.  

 



This configuration is quite common, for example, it can be a conducting plate in a rotating 

machine or a transformer, a core lamination, a winding conductor, etc., excited on its both 

sides by the same value of H. We know that 𝐁 = 𝛁 × 𝐀,  and  

𝐇 =
1

𝜇0

(𝛁 × 𝐀) =
1

𝜇0
(

𝜕𝐴𝑧

𝜕𝑦
𝐚̂𝑥 −

𝜕𝐴𝑧

𝜕𝑥
𝐚̂𝑦) 

Remember that A will be only in z direction because we are doing two-dimensional 

approximation.   

This above equation was derived in slide 7 of L 28. Now, in this case, H is only in x 

direction. So, only 
1

𝜇0
(

𝜕𝐴𝑧

𝜕𝑦
𝐚̂𝑥) exists and 

1

𝜇0
(

𝜕𝐴𝑧

𝜕𝑥
𝐚̂𝑦) is not defined on the surface. We are 

imposing only 
1

𝜇0
(

𝜕𝐴𝑧

𝜕𝑦
𝐚̂𝑥) on the boundary. Inside the conductor domain also H is in x 

direction because there are no air gaps in the domain.   

H is going to reduce as we go from the surface of the conductor to the inner region of the 

conductor.  That is the reason why 
𝜕𝐴𝑧

𝜕𝑦
  is going to change as shown in the following figure.  

 

Remember, the lines shown in the above figure are equi A or equi flux countours. As 

mentioned in one of the previous lectures, lines and contours can be interchangeably used 

in electromagnetics and particularly FE analysis.  

In the above figure, we can see that A is varying with y. This can be understood from the 

figure because these colours are changing with y. Here, 𝐻𝑥 is imposed and we have to solve 

the diffusion equation for this geometry and the magnitude of 𝐻𝑥 is going to reduce as we 



go inside the conductor. Correspondingly, 
𝜕𝐴𝑧

𝜕𝑦
 and 𝐴𝑧  are also going to change as we go 

inside the conductor from both these surfaces as seen in the above figure.   
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Now, what is the application of the theory that we saw in the previous slide. Let us take a 

conductor shown in the above slide which is excited by H on both sides. Consider that the 

conductor is electrically thick. As explained in L 10, the thickness of an electrically thick 

conductor is much greater than its skin depth.  

If the conductor is electrically thick then H value reduces to 0 before the midpoint.  

Similarly, if the electrically thick conductor is excited on the two surfaces then the H value 

will go to 0 even before we go to the centerline of this conductor from the two surfaces. 

So, in other words, the conductor in the above slide will represent two semi infinite cases. 

We also know from the literature that for semi infinite case, the eddy loss per unit area is 

given by the following equation 

 

  



So the plate given in the above slide can be analyzed in terms of two semi-infinite plates. 

That is why if the thickness (2b) of the conductor exceeds the value of skin depth then the 

normalized eddy current loss will approach the value of 2.  
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Let us go further and see some more complication in the problem domain. In this slide, we 

will see  how to model transformer core joints particularly for frequency response analysis 

which is used to find the transformer impedance as a function of frequency. When we have 

to do time harmonic analysis we consider the core and corresponding losses. Hence, the 

permeability will be a complex number.  

We have explained earlier that complex permeability will be used to represent a lossy 

magnetic material. The imaginary part of the complex permeability represents losses. In 

this problem, we will find the effective complex permeability of the core joint shown in 

the following figure. 



 

A typical joint of a leg or limb and yoke is shown in the figure on the left hand side. So, 

this joint is the intersection of the vertical portion and the horizontal portion of the core of 

a transformer. If we take a cross section (AA), then we will get the problem domain shown 

in the figure on the right hand side. There are air gaps in the problem domain. The air gaps 

will be staggered as shown in the figure. This configuration will make the whole structure 

of the transformer as mechanically stable. In the joint region, air gap is never allowed to 

be along the same vertical line.  

We again impose 𝐻𝑥 on both horizontal boundaries top and bottom of this problem domain. 

But we do not have any information about 𝐻𝑦. Because, of the air gaps the flux contours 

hit the top and bottom surfaces or lines at some angle as shown in the above figure.  

The value of 𝐻𝑦 vary along the two horizontal boundaries or lines. So, 𝐻𝑦 is unknown and 

we impose only 𝐻𝑥 component along the two boundaries. Again we have seen the 

expressions of 𝐻𝑥 and 𝐻𝑦 in L 28. So, 𝐻𝑥 is given by the following expression and we are 

imposing this condition and 𝐻𝑦 is not zero and it is unknown on the boundary. 

 

As we have seen earlier, the entries of boundary condition on the right-hand side matrix 

𝐵𝑏 of the final linear system of equation is given below.  

 



In the above expression, 𝑖 stands for node number, 𝐵 is the right-hand side matrix, 𝑏 is the 

contribution of boundary condition to this right-hand side matrix, and e represents the 

element number under consideration. We have seen the above integral for an ith node in 

slides 8 and 9 of L 28.  

Now 𝐚̂𝑛 will be simply 𝐚̂𝑦 because for the horizontal line and the corresponding surface in 

3D, the unit normal will be in y direction if  we are considering the plane of the slide as  xy 

plane. So, if we substitute 𝐚̂𝑦 in the place of 𝐚̂𝑛, we will get the dot product of the second 

term in above integral as 0.   

The dot product with the first term will be nonzero and now in place of 
1

𝜇0

𝜕𝐴𝑧

𝜕𝑦
 we substitute 

𝐻𝑥 which is the imposed boundary condition and the above integral reduces to the 

following equation.  

 

Again we saw the solution for the above integral in L 28.  The contribution of boundary 

condtion for any node will come from the corresponding contour integral over the 

considered element. Remember, for each node of the element under consideration, we will 

get the above integral that corresponds to the boundary condition. The contributions of the 

inner segments will be cancelled as explained in L 28.  

Also, we have seen the evaluation of the above integral in L 28. We calculate the 

contributions of all such boundary edges by using the procedure discussed in L28, for the 

imposed boundary condition.   

Each of these individual elements on the corresponding edges will contribute to the 𝐵𝑏 

matrix. All the contributions of the nodes can be calculated by the procedure discussed in 

L28 and then the overall global matrix can be calculated accordingly. Then, further 

calculations can be made to get the value of magnetic flux density (B) and using the 

calculated values of B, the average value of B over the whole domain under consideration 



is calculated. The average value of B is divided by the imposed 𝐻𝑥 to calculate the value 

of complex permeability. For more details, see the reference given below. 
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We will see how to calculate eddy current losses in a coil. This is very important. Here as 

an example, we are considering the high voltage winding of a power transformer. In the 

above slide, a three-dimensional view is shown in the left hand side figure. In the figure, 

only a core leg and windings are shown. The leakage field at an instant of time is directed 

vertically upwards and we are not showing the fringing field at the ends of the windings. 

In this figure, we are just showing the axial field, but there will be radial flux.  

The objective is to calculate the eddy current loss of high voltage winding which is 

subjected to the alternating leakage magnetic field. We will use the eddy loss formula that 

we have already seen in L 10. Before calculating eddy current loss we will see the geometry 

of HV winding a little bit more in detail. The high voltage winding is shown in the figure 

on the right hand side and it is not to the scale. The starting and ending points and the radial 

depth of the HV winding are also shown in the figure.  



The high voltage winding will have a number of conductors placed as shown in the figure. 

Each rectangle in the figure represents a disk and the dimensions of each rectangle are also 

shown in the above slide.   

(Refer Slide Time: 16:08) 

 

The actual leakage field plot for a transformer is shown in the above slide.  There is axial 

flux only in the middle portion of the winding and at the ends fringing and radial flux will 

be predominant. In lecture 10, we have seen the following expression of eddy loss formula 

for a thin conductor of thickness t which is less than or equal to skin depth and the 

conductor is excited by 𝐵0 on both sides as shown in the following figure. 

𝑃𝑒𝑑𝑑𝑦 =
𝜔2𝑡2𝐵0

2

24𝜌
(

Watts

m3
) 

 

In the above expression, 𝜌 is the resistivity, 𝐵0 is the peak value of flux density, t is the 

thickness of the conductor in the direction perpendicular to the flux. In the above figure, 

the flux is in vertical direction. So, t will be perpendicular direction to the flux as shown in 

the figure. Remember the expression is loss per unit volume.  



At the ends of the winding, we have the radial flux component as shown in the following 

figure. 

 

For the radial flux component, the perpendicular dimension will be W (the width of the 

conductor). Then the eddy current loss formula will be modified as given below. 

(𝑃𝑒𝑑𝑑𝑦)
𝑟𝑎𝑑𝑖𝑎𝑙

=
𝜔2𝑤2𝐵𝑥

2

24𝜌
 

Using these formulae, we can individually calculate losses due to axial and radial fields 

and then sum them up for the winding under consideration.   
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Now, let us go to the problem domain (the whole HV winding) which is shown in the above 

slide. The title of this slide is “Eddy current loss using Magnetostatic FEM simulation”. 

Now, this looks odd because we are finding eddy current losses and it is a time varying 

case but we are using magnetostatic FEM solution for that.  



This approach is allowed because the thickness of the conductor and the overall dimension 

of the conductors are such that they are comparable or less than the skin depth. We can 

consider them as electrically thin conductors. The eddy currents induced in the individual 

conductors are not significant and can be assumed that these eddy currents do not influence 

the leakage field. So, if eddy current reaction is neglected then we can effectively use 

magnetostatic FEM simulation to calculate the values of 𝐵𝑥 and 𝐵𝑦 at the conductor centers. 

We can use the two formulae that we have seen in the previous slide for calculating eddy 

current losses in each conductor due to axial and radial fields.  

(Refer Slide Time: 20:10) 

 



 

Effectively  we are calculating field values using static simulation and then we are using  

the expressions that are derived starting by solving diffusion equation. So, we are using 

static FEM simulation to calculate magnetic fields, then using classical eddy current theory 

we calculate the eddy current losses of each conductor analytically, and then we will sum 

up all the losses for the entire winding.  

For that, we need to find out the positions of each of this conductor and the corresponding 

representative point. So, for each conductor, we will assume that the flux density of the 

conductor is represented using the value of B at the centroid. Then we have to first find out 

the element number in which this center point lies. Then using the information of the 

element, we get the corresponding 𝐵𝑥 and 𝐵𝑦 of that element. These values are further used 

to calculate eddy current losses. In one of the previous lectures, we have seen the procedure 

to find the element in which the point lies.  
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Now, we will see how to verify the eddy current losses calculated by using the obtained 

FEM solution. Always we should have some verification for any kind of FE analysis. The 

obtained solution can be verified by using an approximated analytical solution or if we 

have some verification problem in the literature. If all the geometrical and electrical 

parameters and solutions are available, then we can first solve that problem to get 

confidence and then we can use the developed formulation to analyze our problem.  

In this case, we are using an analytical formula to verify the developed FE analysis. In 

analytical formulation, we have to do some approximations. Here, we are analytically 

integrating the effect over the entire radial depth of the high voltage winding.  

 

In one of the earlier lectures, we have seen the above figure of the ampere turn diagram 

associated with the leakage field in the LV and HV windings and gap between the windings 

in a transformer.   



From the above figure, one can see that the flux in the gap region is uniform and in LV and 

HV winding, the leakage field reduces as we go away from the gap towards the other end. 

So, if we analytically integrate the flux density in the winding region, then the average 

value of flux density in the winding region is given by the following equation 

(𝐵0
2)𝑚𝑒𝑎𝑛 =

𝐵𝑔𝑝
2

3
 

The derivations of these terms are given in the following reference.  

 

We are analytically integrating the flux density over the entire winding region because in 

the eddy loss formula we have a 𝐵2 term.  So, we have to find out a mean value of 𝐵0
2 and 

use that mean value in the formula. This mean value will represent the field distribution in 

the whole winding. So, then the calculations become straightforward. Remember, flux 

density (𝐵𝑔𝑝) in the gap is defined by the following equation.  

𝐵𝑔𝑝
 =

√2𝜇0𝑁𝐼

𝐻𝑊
 

Here, 𝐻𝑊 is the height of the winding and 𝐼 is the RMS current because we have √2 term 

in the above equation. So, always remember that the above formula represents the peak 

values of 𝐵𝑔𝑝. The peak value eddy current loss is calculated by using the following 

equation.  

𝑃𝑒𝑑𝑑𝑦 = 3 ×
𝜔2𝑡2𝐵𝑔𝑝

2

24𝜌 × 3
× 𝑆 × 𝑁 × 𝜋𝐷𝑚𝑒𝑎𝑛 

In the above equation, 𝑆 is the cross sectional area of each turn. In this analytical 

formulation, we are considering axial field only.  

So, if we consider the axial field as shown in the following figure then the corresponding 

thickness is t and it is in the perpendicular dimension to the axial field. That is why t appears 

in the above expression.   



 

 

The loss calculated using the above expression is for N turns because there is a factor N. 

Also, we have a factor  3 in the above expression because this loss corresponds to the three 

phases.  So, 3 ×
𝜔2𝑡2𝐵𝑔𝑝

2

24𝜌×3
× 𝑁 will give eddy loss per unit volume for all turns and three 

phases. Now, we have to multiply this by the volume which is nothing but cross sectional 

area of each turn times 𝜋𝐷𝑚𝑒𝑎𝑛 as given in the above expression. Here, we are taking the 

diameter as mean diameter and it again simplifies the calculation.  
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Now, we will verify the developed FE formulation. In the analytical formulation we have 

considered axial field. So, in the FEM simulation also we should have axial field only to 

validate the results.  

In the FEM simulation, the fields are made completely axial by taking the horizontal 

boundaries at top and bottom, very close to the low voltage and high voltage windings and 

imposing homogeneous Neumann condition. So, the derivative of potential (
𝜕𝐴𝑧

𝜕𝑛
) with 



respect to the normal of the two boundaries is 0 and this condition will make all the flux 

lines as straight and they impinging normal to the horizontal boundaries as shown in the 

following figure.  

 

So, we have constrained the flux to remain axial throughout the high voltage winding. Now, 

the eddy loss calculated by using the FE analysis is compared with the loss value calculated 

using the analytical formulation. Before doing that, let us understand the formula to 

calculate eddy current loss (𝑃𝑒𝑑𝑑𝑦) using FE analysis.  

Now, we are not analytically integrating the loss as we did for approximate analytical 

formulation. Here, we are going to calculate the values of 𝐵𝑥 and 𝐵𝑦 for each conductor 

and the eddy current loss is calculated in the individual conductor.  

We need to worry about only 𝐵𝑦 because the flux is completely axial and it is in y direction 

and the corresponding thickness is t as we saw in the analytical formulation. The eddy 

current loss in the entire HV winding can be calculated using the following expression. 

𝑃𝑒𝑑𝑑𝑦 = 3 × 𝜋𝐷𝑚𝑒𝑎𝑛 × ∑
𝜔2𝑡2𝐵2

24𝜌
× 𝑆 

 

𝐶𝑜𝑛𝑑𝑢𝑐𝑡𝑜𝑟𝑠

 

In the above equation, ∑
𝜔2𝑡2𝐵2

24𝜌
× 𝑆  

𝐶𝑜𝑛𝑑𝑢𝑐𝑡𝑜𝑟𝑠 is the eddy loss per unit length, because cross 

sectional area (S) is already considered. Now, this eddy loss per unit length is multiplied 

by 𝜋𝐷𝑚𝑒𝑎𝑛 of the entire winding. So, now 𝜋𝐷𝑚𝑒𝑎𝑛 × ∑
𝜔2𝑡2𝐵𝑦

2

24𝜌
× 𝑆  

𝐶𝑜𝑛𝑑𝑢𝑐𝑡𝑜𝑟𝑠 term becomes 

eddy loss for the entire one phase of HV winding. Then multiply it by three to calculate the 



loss for all the three phases of the high voltage winding. So, this is how we calculate the 

eddy current loss using a magnetostatic FE simulation. For more details about the theory 

and the corresponding explanation see the following reference. 

 

We have already explained that B is the peak magnetic flux density at the center of each 

conductor. Using the calculated B value, we calculate the eddy loss per unit volume for 

each conductor and then multiply it by the area of the conductor. After that, sum it over all 

conductors and multiply by 3 × 𝜋𝐷𝑚𝑒𝑎𝑛. So, the above expression gives the total eddy loss 

for the entire three phases of the HV winding.   

Eddy losses calculated using analytical and FEM formulations are compared in the 

following table.  

 

The two results are quite close and this gives us confidence that the finite element 

formulation that we have adopted is correct.  We can use this formulation for any 

complication either in geometry or ampere turn distribution because, in one of the very first 

lectures I told that one of the major advantages of FEM is that it is more or less independent 

of geometrical complications.   

So, this is how we can validate our finite element formulation by solving a problem with 

simplified flux distribution and comparing the results to get confidence. Then the 

formulation is used to solve more complex problems. So, we will stop here and start a new 

topic in the next lecture. Thank you.  
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