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Calculation of Eddy Current Losses 

 

Welcome to 28th lecture. We will continue our discussion on time-harmonic problems and 

solution of the diffusion equation. 
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We are going to see 3 to 4 applications of these  time harmonic problems. First, we will see the 

calculation of eddy current losses which is very common in many applications. In fact in 

electrical machines and equipments, we want to minimize eddy currents. But in some other 

applications like heating applications, we need eddy currents. So, calculation of eddy currents 

is important in electromagnetic devices.  

Now, induced electric field intensity in absence of free charges is calculated by using 

𝐸 = −
𝜕𝐴

𝜕𝑡
= −𝑗𝜔𝐴 

 The complete expression of electric field intensity is  

𝐸 = −∇𝑉 −
𝜕𝐴

𝜕𝑡
 

But  if there is no charge accumulation the −∇𝑉 = 0. So, charges are moving and only currents 

are present and they can be either free currents or induced currents. 



An example for the case where there is accumulation of charges is a capacitor. For example, in 

a capacitor charges get accumulated and −∇𝑉 term is non zero. If we are considering a case 

where only currents (either source currents or induced currents) are flowing then there is no 

charge accumulation. 

So, −∇𝑉 = 0 and 𝐸 = −
𝜕𝐴

𝜕𝑡
, 

𝜕

𝜕𝑡
 is converted to 𝑗𝜔 in the frequency domain. Then, eddy currents 

due to induced electric field will be calculated by using the following expression 

𝐽𝑒𝑑𝑑𝑦 = 𝜎𝐸 = −𝜎
𝜕𝐴

𝜕𝑡
= −𝑗𝜔𝜎𝐴 

We have seen the above expression earlier in the diffusion equation. Now, eddy current loss is 

𝑉𝐼 and the corresponding JE will be loss per unit volume because the unit of E is V/m and J is 

A/m2. So, 1/m times 1/m2 will be 1/m3, so that is why JE will be loss per unit volume. In the 

following equation of loss we have complex conjugate for E because they are phasors. So 

always when we take product of electrical quantities we consider one of the quantities as 

complex conjugate.  

𝑃𝑒𝑑𝑑𝑦 = ∫ 𝐽𝑒𝑑𝑑𝑦𝐸∗𝑑𝑥𝑑𝑦𝑑𝑧

𝑣

= ∫
|𝐽𝑒𝑑𝑑𝑦|2

𝜎
𝑑𝑥𝑑𝑦𝑑𝑧

𝑣

= ∫ 𝜎|𝐸|2𝑑𝑥𝑑𝑦𝑑𝑧

𝑣

 

If we substitute 𝐸∗ = 𝐽𝑒𝑑𝑑𝑦
∗ /𝜎, then we get 

|𝐽𝑒𝑑𝑑𝑦|2

𝜎
𝑑𝑥𝑑𝑦𝑑𝑧 as given in the bove equation.  
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Now, we will take a standard bar plate problem which is a representative case for eddy current 

loss calculations. In the figure given in the above slide, we have a current carrying bar. Suppose 



there is some structural plate in its vicinity. This situation appears in many electrical equipment 

and machines. So the current carrying conductor will induce eddy currents in the structural 

plate in its vicinity.  

Here, we are interested in finding eddy current loss in the plate due to the current in the bar.  

This current is going to produce alternating magnetic field around it and that field is going to 

induce eddy currents in the plate because of the conductivity associated with the plate. If we 

are interested further in the calculation of temperature rise, then that also can be done.  The 

eddy current losses per unit volume for each finite element can be fed to a thermal FEM code 

or commercial software to calculate the temperature rise. But in this course, we are restricting 

ourselves to electromagnetic field calculation and corresponding performance parameters and 

we will not get into the thermal analysis. 

One more thing that we want to remember is we are not interested in eddy current losses 

induced in the bar. So, we will define 𝜎 = 0 for the current carrying bar. While doing FE 

analysis one has to be clear about the focus of the problem to reduce the problem complexity. 

Here since we are interested only in eddy currents in the plate, we need not define 𝜎 for the bar 

in the code. If we define it,  we will get losses in the bar also. 

If we are interested in calculating losses in the bar as well, then we have to define its 

conductivity. Suppose the bar is made of copper then we have to define the conductivity in the 

corresponding subdomain and we have to also worry about the skin effect and the 

corresponding size of finite elements in the bar. So, that increases the complexity, if we want 

to avoid that complexity then we do not have to define conductivity for this bar and we are 

treating that bar as a source which is inducing eddy currents in the plate.  

If we are interested in skin effect and effective AC resistance of the bar, then we have to define 

conductivity and then take care of skin effect and the mesh size in the bar. So, that is the reason 

we are not defining conductivity in the bar. Here, we are going to the following part of the code 

and rest of the code will be similar.  



 

In the above code, we will set up a loop which will go through each element. For each element, 

if the subdomain number of the element is 2 (mild steel plate) then we will define 𝜇 = 𝜇𝑟𝜇0. 

𝜇𝑟 is the relative permeability of mild steel and 𝜎 = 1/(1.429 × 10−7) because for mild steel 

𝜎 = 7 × 106S/m.  If the subdomain number of the element is 1 or 3, that means either the 

domain is air or bar then 𝜇 is 𝜇0. Because we have seen earlier the permeability of copper is 

also 𝜇0, as 𝜇𝑟 is close to 1 and 𝜎 = 0 and for air, 𝜇 = 𝜇0 and 𝜎 = 0. As explained earlier, we 

are defining 𝜎 = 0 for copper bar because we are not interested in eddy currents in the bar.  
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The following command will give the element level coefficient matrix and it is identical to the 

one that we saw.   

 

Then the element level source matrix is given by the following command.   

 

In this code, matrix D is the only new thing and it is defined by using the following command. 

 

Mr. Sairam had explained in one of his tutorials on FEM that a small matrix can be written in 

Scilab as given in the above command.  First row, second row and third row are separated by 

a semi colon. So, the above command is the only new line to be added in the code that we saw 

in the previous lecture.   

Now, we can see how FEM coding is straightforward and simple. If we understand a simple 

Poisson’s equation code which was was discussed and explained, then we can use the same 

code for diffusion equation if we just add the new parts of the code that we discussed in this 

slide. Here, we have formed all the element level matrices.   
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The global matrix is formed as discussed in the previous lecture. Again, we first take the global 

node numbers which will be second to fourth entries of the corresponding column of the t 

matrix because the dimensions of t matix is 4 × number of elements. In each column of t 

matrix, the first entry is the sub-domain number and second, third, and fourth entries are the 

global node numbers of the corresponding element. By using the following command we can 

take the global nodes for one particular element under consideration.  

 

We are saving the three global node numbers of the element in the nodes matrix. We basically 

set up the following for loop and using the commands in the for loop we are forming global 

coefficient matrix C, global D matrix and global source matrix. 



 

After forming the final set of linear equations we have to impose the boundary conditions. 

Here, for the outermost box, A will be defined as 0.  
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By forming all global matrices, imposing boundary conditions and then inverting the final 

matrix equation we would have got the solution in terms of nodal potentials. Assuming that we 

have written a code and we have got the solution, we will see the post processing part of this 

code.  

Again going from element to element, if the sub-domain number of that element is 2 that means 

the element is in the region of plate where we are interested to calculate eddy currents. 

So, that means if that element is inside the plate then we take its global node numbers, the 

corresponding nodes x and y coordinates of the three global nodes. In the pot variable, we store 

the magnetic vector potential at the centroid of the element by taking the average of potentials 

at the three nodes of the element. Then the eddy current loss in the element can be calculated 

by using the following expression 

𝑃𝑒𝑑𝑑𝑦 = ∫ 𝜎|𝐸|2𝑑𝑥𝑑𝑦𝑑𝑧

𝑣

 



Here, we have dz = 1 because it is a 2-dimensional approximation. So, we will be calculating 

losses per meter depth. These calculations can be done using the code given in the above slide. 
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The magnitude of E is calculated by using −𝑗𝜔𝐴. So, 𝐸2(= 𝜔2𝐴2 
) is calculated for each 

element. Here, we are taking the average value of A for the corresponding element. Losses in 

each element can be calculated by using the code given in the above slide. The following 

commands will add all the losses corresponding to all the elements in the plate and then display 

the value of loss.  
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The solutions (potential contours) for mild steel and aluminium plates are shown in the figure 

on the above slide. For the mild steel case, we can clearly see the skin effect and in case of 

aluminium, the skin depth is more. For 50 Hz excitation the skin depth for mild steel is around 

2.69 mm.  

The skin depth for aluminium is more than 10 mm so that is why in the contour plot we can 

see that one contour is diffusing out of the plate. The diffusion of potential or field is more 

because skin depth is more. The corresponding losses for the two plates can be calculated after 

determining the fields and by following the procedure that we just saw. The loss obtained for 

mild steel is 367 W/m and for aluminium it is 76 W/m. 

The value of loss is low for aluminium because in this problem we have used sufficiently thick 

aluminium. If we use a thin aluminium plate, then the loss will be quite high. So, whenever we 

use aluminium or copper, the thickness should be sufficiently high, it should be at least equal 

to skin depth to reduce the losses to a reasonably low value. Otherwise, there will be excessive 

losses in aluminium plate. 

Before going further we will see what happens if the thickness of aluminium plate is very small. 

As mentioned in the previous discussion, the aluminium sheet thickness should be sufficiently 

high and it should be at least comparable to its skin depth. So, here in the following figure we 

can see that when the thickenss of aluminium plate is less than 5 mm then the loss is quite high. 

 

So, that is why we need to have sufficient thickness for the electromagnetic shield. The 

aluminium and copper are called as electromagnetic shields, because they work as a shield by 

virtue of the eddy currents induced in them and the repelling action. There are other shields 

which are called as magnetic shields, for example, if we want to shield a structural component 

then we have to place a high permeable magnetic material to shield the aluminium plate.  



Then, the magnetic material will take all the flux through it and will not allow the flux to go 

into the structural plate which has to be shielded, so these materials are called as magnetic 

shields.  Aluminium and copper materials are used as electromagnetic shields as they work on 

the principle of eddy currents and the corresponding repelling effect of the field. 
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Let us go further and we will talk about non-homogeneous Neumann boundary conditions. 

This is a little advanced topic but still it is important to understand because we have been 

talking about homogeneous Neumann condition. Dirichlet conditions are two types, one is 

homogenous and the other is non-homogeneous. If voltage is 0 then it is homogenous Dirichlet 

and when voltage is non-zero then it is non-homogeneous Dirichlet condition which is obvious. 

We have used homogeneous Neumann condition in the case of a parallel plate capacitor to 

neglect fringing. These conditions are effectively imposed on the vertical sides of that parallel 

plate configuration. Then one may be wondering when would this non-homogeneous Neumann 

conditions would be helpful. 

Llet us see the application of these boundary conditions. We start with 𝐁 = ∇ × 𝐀 and then  

𝐇 =
1

𝜇
(∇ × 𝐀) =

1

𝜇0
(

𝜕𝐴𝑧

𝜕𝑦
�̂�𝑥 −

𝜕𝐴𝑧

𝜕𝑥
�̂�𝑦)  

Now, if we expand ∇ × 𝐀 with A having z component then we will have only two components 

of H as given in the above equation.    



For the geometry shown in the following figure non-homogeneous Neumann boundary 

conditions are imposed on the top and bottom boundaries and we will see the application of 

this later.  

 

Imposing non-homogeneous condition is equivalent to imposing tangential magnetic field 

intensity on the top (𝐻𝑡) and bottom (𝐻𝑏) plates or surfaces in 3D. 

Always remember the geometry shown in the above figure is a 2D approximation but actually 

the configuration is 3D. So, now if we say 𝐇 = 𝐻𝑡𝐚𝑥 is imposed on the top plate then 

effectively we impose 
𝜕𝐴𝑧

𝜕𝑥
= 0.  

Then only H will become 𝐻𝑡�̂�𝑥, so 
𝜕𝐴𝑧

𝜕𝑥
 has to be 0 then only the  �̂�𝑦 component of H will be 0. 

So, that effectively means that we are imposing 
𝜕𝐴𝑧

𝜕𝑥
= 0 and 

𝜕𝐴𝑧

𝜕𝑦
= 𝜇0𝐻𝑡 on the top surface or 

boundary. Effectively, we are imposing the non-homogeneous boundary condition 
𝜕𝐴𝑧

𝜕𝑦
= 𝜇0𝐻𝑡.  

The 
𝜕𝐴𝑧

𝜕𝑦
 is a normal derivative of 𝐴𝑧 in this problem.  Similarly, 𝐇 = 𝐻𝑏𝐚𝑥  is imposed on the 

bottom surface or boundary.  Now we will derive the entries of element level boundary 

condition matrix (b matrix)  for all the nodes. 

Now, consider the following expression that is derived using Galerkin’s method.  

 

In the above equation, the slide number is also indicated for the reference. So, in the process 

of deriving FE formuation using Galerkin’s method, we get the above equation. The rest of the 

terms in the FE formulation will remain the same. Because in this problem we are imposing 

the boundary conditions. In the next slides, we will see how these boundary conditions will get 

reflected in our final set of matrix equation.   
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In the following figure, we are considering the  top edge of the geometry that we have seen in 

the previous slide. 

 

For this boundary, 𝐚𝑛(normal vector) will be 𝐚𝑦. The boundary conditions that we are imposing 

in the present problem is  

1

𝜇0

𝜕𝐴𝑧

𝜕𝑦
= 𝐻𝑡 ,

𝜕𝐴𝑧

𝜕𝑥
= 0 

and 𝑑𝜏 = 𝑑𝑥 because the contour for this boundary will be 𝑑𝑥. By substituting these 

expressions, the contour integral that we saw in the previous slide reduces to the following 

equation. 

1

𝜇0
∮ [(𝑁𝑖

𝑒 𝜕𝐴𝑧

𝜕𝑦
) �̂�𝑦]

𝜏

⋅ �̂�𝑦𝑑𝑥 

Only one term will remain in the contour integral. Now, we have to evaluate the above integral.  

Let us take the above geometry which is a part of the top surface or top boundary. For the top 

boundary, there maybe a number of elements but here we are just considering three elements. 

We have to evaluate the above integral for each of these elements and determine the boundary 

conditions for the corresponding nodes. We had also seen in case of weighted residual 

technique that we write weighted residual statement for each node. In linear formulation, if an 



element has three nodes then there will be three weighted residual statement and one statement 

for each node.  

Let us consider the integral for node 1 in element 1 then 𝑁𝑖
𝑒 will be 𝑁1.  Now, we are evaluating 

the above integral for 𝑁1 considering the value of 
1

𝜇0

𝜕𝐴𝑧

𝜕𝑦
 as 𝐻𝑡.  

Node 1 is part of element number 1 and in weighted residual technique we had already seen 

that the common edges do not contribute to the boundary matrix because the normal vectors  

(𝐚𝑛′𝑠) on the common edges are oppositely directed and the value of the shape function is also 

same. So the individual contributions get cancelled.  

So, that is why the line integral over edges joining nodes 1 and 4 and nodes 4 and 2 will get 

cancelled. Only the contributions for the nodes on the boundary will remain. So, we have to 

evaluate the above integral only on the outermost boundary and in this lecture we are taking 

the two segments joining nodes 1 and 2 and nodes 2 and 3. 

The closed integral for node 1 in element 1 reduces to the following equation.  

𝐻𝑡 ∫ 𝑁1
(1)

𝑑𝑥

𝑛𝑜𝑑𝑒1

𝑛𝑜𝑑𝑒2

 

Here, we are considering the value of 𝐻𝑡 as constant over the boundary. So, 𝐻𝑡 comes out of 

the integral. 

Now, we are substituting the standard expression for 𝑁1 in the above integral and we are 

integrating with respect to x. So, the integral will get simplified as given below.  

 

In the derivation, in the place of 𝑥 we substitute 𝑥1 and 𝑥2 and in place of 𝑦 we can either 

substitute 𝑦1 or 𝑦2 because y is constant over the considered boundary. Since we are talking of 

node 1 we will substitute 𝑦1. So, when the whole boundary integral is evaluated it will reduce 

to the following expression. 



 

This entry will effectively go into the boundary condition matrix. The above expression 

corresponds to the node 1 in the B matrix.  

Now, node 2 is common for elements 1 and element 3.  The boundary integral is evaluated for 

node 2 two times, one integral as part of element 1 and the other integral for element 3. Node 

2 is a part of element 2 and there will not be any contribution to the boundary condition matrix. 

Because none of the three edges of element 2 are on the boundary. 

All the 3 sides of element 2 are common to other elements and by the same logic, the 

contributions will get cancelled. For node 2, the contributions will be from elements 1 and 3.   
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The contributions of the boundary integral for node 2 from elements 1 and 3 are given below. 

 

𝐻𝑡 remains the same for both the elements. Similarly, for node 3 the boundary integral 

contribution from element 3 is given below  



 

Remember that these node 1 and node 3 may be common to some other element. So, there will 

be additional contributions for node 3 and for node 1. So, that is how we can evaluate the 

boundary condition matrix and we have evaluated the integral for the top edge and that too 

only for the three nodes and there may be more number of nodes on this boundary. 

For all those nodes, these expressions will have to evaluated and they will go into the 

corresponding boundary condition matrix which is the right hand side matrix. Remember, this 

matrix is only for the boundary conditions and there will be contributions from the source 

matrix if there is J somewhere in the domain.  

If we use linear elements in the formulation and if J exist in the domain, then the contributions 

in the source matrix will be 𝐽∆/3 for all the 3 nodes and they will get appended to the B matrix. 

We will stop here and then will continue the discussion in the subsequent lectures. 
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